1
|
Chen X, Yao N, Mao Y, Xiao D, Huang Y, Zhang X, Wang Y. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions. Neural Regen Res 2024; 19:1541-1547. [PMID: 38051897 PMCID: PMC10883507 DOI: 10.4103/1673-5374.386398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00033/figure1/v/2023-11-20T171125Z/r/image-tiff
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier. However, the potential links between them following ischemic stroke remain largely unknown. The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway. Meanwhile, Wnt/β-catenin pathway activation by the pharmacological inhibitor, TWS119, relieved oxidative stress, increased the levels of cytochrome P450 1B1 (CYP1B1) and tight junction-associated proteins (zonula occludens-1 [ZO-1], occludin and claudin-5), as well as brain microvascular density in cerebral ischemia rats. Moreover, rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress, suppression of the Wnt/β-catenin pathway, aggravated cell apoptosis, downregulated CYP1B1 and tight junction protein levels, and inhibited cell proliferation and migration. Overexpression of β-catenin or knockdown of β-catenin and CYP1B1 genes in rat brain microvascular endothelial cells at least partly ameliorated or exacerbated these effects, respectively. In addition, small interfering RNA-mediated β-catenin silencing decreased CYP1B1 expression, whereas CYP1B1 knockdown did not change the levels of glycogen synthase kinase 3β, Wnt-3a, and β-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivation/reoxygenation. Thus, the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling, and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress, increased tight junction levels, and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
Collapse
Affiliation(s)
- Xingyong Chen
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nannan Yao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yanguang Mao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongyun Xiao
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiyi Huang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Academy of Medical Science, Fuzhou, Fujian Province, China
- Key Testing Laboratory of Fujian Province, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Zuo C, Fan P, Yang Y, Hu C. MiR-488-3p facilitates wound healing through CYP1B1-mediated Wnt/β-catenin signaling pathway by targeting MeCP2. J Diabetes Investig 2024; 15:145-158. [PMID: 37961023 PMCID: PMC10804895 DOI: 10.1111/jdi.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Diabetic wounds are difficult to heal, but the pathogenesis is unknown. MicroRNAs (miRNAs) are thought to play important roles in wound healing. The effect of miR-488-3p in wound healing was studied in this article. MATERIALS AND METHODS The gene methylation was measured by methylation specific PCR (MSP) assay. A dual-luciferase reporter assay was adopted to analyze the interaction between miR-488-3p and MeCP2. RESULTS Cytochrome P450 1B1 (CYP1B1) is a monooxygenase belonging to the cytochrome P450 family that aids in wound healing. Our findings showed that the miR-488-3p and CYP1B1 expression levels were much lower in wound tissues of diabetics with skin defects, but the methyl-CpG-binding protein 2 (MeCP2) level was significantly higher than that in control skin tissues. MiR-488-3p overexpression increased cell proliferation and migration, as well as HUVEC angiogenesis, while inhibiting apoptosis, according to function experiments. In vitro, MeCP2 inhibited wound healing by acting as a target of miR-488-3p. We later discovered that MeCP2 inhibited CYP1B1 expression by enhancing its methylation state. In addition, CYP1B1 knockdown inhibited wound healing. Furthermore, MeCP2 overexpression abolished the promoting effect of miR-488-3p on wound healing. It also turned out that CYP1B1 promoted wound healing by activating the Wnt4/β-catenin pathway. Animal experiments also showed that miR-488-3p overexpression could accelerate wound healing in diabetic male SD rats. CONCLUSIONS MiR-488-3p is a potential therapeutic target for diabetic wound healing since it improved wound healing by activating the CYP1B1-mediated Wnt4/-catenin signaling cascade via MeCP2.
Collapse
Affiliation(s)
- Chenchen Zuo
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Pengju Fan
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Yang
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chengjun Hu
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Kwon YJ, Kwon TU, Shin S, Lee B, Lee H, Park H, Kim D, Moon A, Chun YJ. Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166868. [PMID: 37661069 DOI: 10.1016/j.bbadis.2023.166868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) catalyzes estrogen metabolism to produce metabolites that promote the progression of breast cancer. Since the invasive properties of cancer cells cause cancer relapse, which dramatically reduces patient survival, we investigated the new pro-invasive mechanism involving CYP1B1 in breast cancer. Exploring clinical data from invasive breast cancer patients revealed that CYP1B1 exhibits a potential correlation with urokinase-type plasminogen activator receptor (uPAR). Interestingly, uPAR mRNA expression was elevated in invasive breast cancer patients carrying TP53 genes with driver mutations, and our results showed that CYP1B1 activates the uPAR pathway following regulation of p53 according to its mutant status. CYP1B1 suppressed wild-type (WT) p53 whereas it induced the oncogenic gain-of-function mutant p53R280K, not only via transcriptional regulation but also the protein stabilization and activation following phosphorylation on Ser15 residue of p53R280K. Intriguingly, results from CYP1B1 polymorphic gene study and 4-hydroxyestradiol (4-OHE2) treatment showed that CYP1B1 regulates p53s and uPAR through its enzymatic activity. Furthermore, effects of DMBA and TMS on uPAR expression disappeared in HCT116p53-/- cells, indicating that p53 is critical for uPAR induction by CYP1B1. Collectively, our results demonstrate that CYP1B1 may reduce the relapse-free survival rate of breast cancer patients by inducing invasive traits in cancer cells via p53 regulation based on the mutation status of TP53 genes and further activation of the uPAR pathway. The elucidation of the previously unknown molecular mechanism of CYP1B1 may provide evidence for the development of effective anti-cancer therapeutic strategies that target the progression of cancer invasion.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Boyoung Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyein Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyemin Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, South Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Tecalco-Cruz AC, Zepeda-Cervantes J. Protein ISGylation: a posttranslational modification with implications for malignant neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:699-715. [PMID: 37711589 PMCID: PMC10497404 DOI: 10.37349/etat.2023.00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15) is a member of the ubiquitin-like (UBL) protein family that can modify specific proteins via a catalytic process called ISGylation. This posttranslational modification can modulate the stability of the ISGylated proteins and protein-protein interactions. Some proteins modified by ISG15 have been identified in malignant neoplasms, suggesting the functional relevance of ISGylation in cancer. This review discusses the ISGylated proteins reported in malignant neoplasms that suggest the potential of ISG15 as a biomarker and therapeutic target in cancer.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Postgraduate in Genomic Sciences, Campus Del Valle, Autonomous University of Mexico City (UACM), CDMX 03100, Mexico
| | - Jesús Zepeda-Cervantes
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico (UNAM), CDMX 04510, Mexico
| |
Collapse
|
5
|
Lee TG, Woo SM, Seo SU, Kim S, Park JW, Chang YC, Kwon TK. Inhibition of USP2 Enhances TRAIL-Mediated Cancer Cell Death through Downregulation of Survivin. Int J Mol Sci 2023; 24:12816. [PMID: 37628997 PMCID: PMC10454696 DOI: 10.3390/ijms241612816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is a deubiquitinase belonging to the USPs subfamily. USP2 has been known to display various biological effects including tumorigenesis and inflammation. Therefore, we aimed to examine the sensitization effect of USP2 in TRAIL-mediated apoptosis. The pharmacological inhibitor (ML364) and siRNA targeting USP2 enhanced TNF-related apoptosis-inducing ligand (TRAIL)-induced cancer cell death, but not normal cells. Mechanistically, USP2 interacted with survivin, and ML364 degraded survivin protein expression by increasing the ubiquitination of survivin. Overexpression of survivin or USP2 significantly prevented apoptosis through cotreatment with ML364 and TRAIL, whereas a knockdown of USP2 increased sensitivity to TRAIL. Taken together, our data suggested that ML364 ubiquitylates and degrades survivin, thereby increasing the reactivity to TRAIL-mediated apoptosis in cancer cells.
Collapse
Affiliation(s)
- Tak Gyeom Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea;
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (T.G.L.); (S.M.W.); (S.U.S.); (S.K.); (J.-W.P.)
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
6
|
Du X, Sheng J, Chen Y, He S, Yang Y, Huang Y, Fu Y, Lie L, Han Z, Zhu B, Liu H, Wen Q, Zhou X, Zhou C, Hu S, Ma L. The E3 ligase HERC5 promotes antimycobacterial responses in macrophages by ISGylating the phosphatase PTEN. Sci Signal 2023; 16:eabm1756. [PMID: 37279284 DOI: 10.1126/scisignal.abm1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Innate immune signaling in macrophages during viral infection is regulated by ISGylation, the covalent attachment of the ubiquitin-like protein interferon-stimulated gene 15 (ISG15) to protein targets. Here, we explored the role of ISGylation in the macrophage response to infection with Mycobacterium tuberculosis. In human and mouse macrophages, the E3 ubiquitin ligases HERC5 and mHERC6, respectively, mediated the ISGylation of the phosphatase PTEN, which promoted its degradation. The decreased abundance of PTEN led to an increase in the activity of the PI3K-AKT signaling pathway, which stimulated the synthesis of proinflammatory cytokines. Bacterial growth was increased in culture and in vivo when human or mouse macrophages were deficient in the major E3 ISG15 ligase. The findings expand the role of ISGylation in macrophages to antibacterial immunity and suggest that HERC5 signaling may be a candidate target for adjunct host-directed therapy in patients with tuberculosis.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Ding Q, Zhang G, Wang Y, Xu L, Wu M, Zhou Y, Xu T, Meng X, Huang C, Zhang L. β-catenin ISGylation promotes lipid deposition and apoptosis in ethanol-stimulated liver injury models. Redox Rep 2022; 27:239-248. [PMID: 36259544 PMCID: PMC9586657 DOI: 10.1080/13510002.2022.2109360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The restoration of the Wnt/β-catenin pathway to alleviate alcoholic fatty liver disease (AFLD) progression is under study as a new strategy for alcoholic liver disease (ALD) treatment. Recent studies have indicated that interferon-stimulated gene 15 (ISG15) can covalently bind to β-catenin by HECT E3 ubiquitin ligase 5 (HERC5), leading to ISG degradation and downregulation of β-catenin levels. However, the relationship between β-catenin and the ISG15 system in AFLD remains unclear. Methods Here, we explored the roles of the ISG15 system in β-catenin activation and in the pathogenesis of alcohol-induced liver injury and steatosis. Results In this study, HERC5 silencing upregulated β-catenin protein expression and inhibited lipid metabolism disorders and cell apoptosis. Reduced β-catenin protein expression, increased lipid metabolism disorders, and cell apoptosis were detected in cells induced with HERC5 overexpression, which was reversible with the reactive oxygen species (ROS) inhibitor. All the above results were statistically analyzed. Thus, these observations demonstrate that β-catenin ISGylation is a prominent regulator of ALD pathology, which works by regulating ROS to induce lipid metabolism disorders and cell apoptosis. Conclusion Our findings provided the mechanism involved in the β-catenin ISGylation, allowing for future studies on the prevention or amelioration of liver injury in ALD.
Collapse
Affiliation(s)
- Qi Ding
- Anhui No.2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Guodong Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Meifei Wu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Yiwen Zhou
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,Key Laboratory of major autoimmune disease, Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
8
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
9
|
Woo SM, Kim S, Seo SU, Kim S, Park JW, Kim G, Choi YR, Hur K, Kwon TK. Inhibition of USP1 enhances anticancer drugs-induced cancer cell death through downregulation of survivin and miR-216a-5p-mediated upregulation of DR5. Cell Death Dis 2022; 13:821. [PMID: 36153316 PMCID: PMC9509337 DOI: 10.1038/s41419-022-05271-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinase involved in DNA damage repair by modulating the ubiquitination of major regulators, such as PCNA and FANCD2. Because USP1 is highly expressed in many cancers, dysregulation of USP1 contributes to cancer therapy. However, the role of USP1 and the mechanisms underlying chemotherapy remain unclear. In this study, we found high USP1 expression in tumor tissues and that it correlated with poor prognosis in RCC. Mechanistically, USP1 enhanced survivin stabilization by removing ubiquitin. Pharmacological inhibitors (ML23 and pimozide) and siRNA targeting USP1 induced downregulation of survivin expression. In addition, ML323 upregulated DR5 expression by decreasing miR-216a-5p expression at the post-transcriptional level, and miR-216a-5p mimics suppressed the upregulation of DR5 by ML323. Inhibition of USP1 sensitized cancer cells. Overexpression of survivin or knockdown of DR5 markedly prevented the co-treatment with ML323 and TRAIL-induced apoptosis. These results of in vitro were proved in a mouse xenograft model, in which combined treatment significantly reduced tumor size and induced survivin downregulation and DR5 upregulation. Furthermore, USP1 and survivin protein expression showed a positive correlation, whereas miR-216a-5p and DR5 were inversely correlated in RCC tumor tissues. Taken together, our results suggest two target substrates of USP1 and demonstrate the involvement of survivin and DR5 in USP1-targeted chemotherapy.
Collapse
Affiliation(s)
- Seon Min Woo
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea
| | - Seok Kim
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea
| | - Seung Un Seo
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea
| | - Shin Kim
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea
| | - Jong-Wook Park
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea
| | - Gyeonghwa Kim
- grid.258803.40000 0001 0661 1556Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Yu-Ra Choi
- grid.258803.40000 0001 0661 1556Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Keun Hur
- grid.258803.40000 0001 0661 1556Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Taeg Kyu Kwon
- grid.412091.f0000 0001 0669 3109Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601 South Korea ,grid.412091.f0000 0001 0669 3109Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601 South Korea
| |
Collapse
|
10
|
ZNF276 promotes the malignant phenotype of breast carcinoma by activating the CYP1B1-mediated Wnt/β-catenin pathway. Cell Death Dis 2022; 13:781. [PMID: 36085146 PMCID: PMC9463175 DOI: 10.1038/s41419-022-05223-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Zinc finger proteins (ZNFs) have been demonstrated to participate extensively in breast cancer progression by functioning as transcription factors, but there are still a variety of ZNFs whose biological mechanisms remain unknown. Here, we show that zinc finger protein 276 (ZNF276) is highly expressed in breast cancer tissues and cell lines. Higher level of ZNF276 correlated with poor prognosis. Gain-of and loss-of function suggested that ZNF276 is essential for the proliferation, migration and invasion of breast cancer cells in vitro and metastasis in vivo. RNA-sequencing and CUT&Tag assay revealed that ZNF276 controlled a variety of growth and metastasis-related genes expression. ZNF276 transcriptionally promoted the expression of CYP1B1 by directly binds to the promoter region of the CYP1B1 through its C2H2 domain. ZNF276 facilitated the translocation of β-catenin from cytoplasm to nucleus through CYP1B1, leading to the upregulation of cyclin D1 and c-Myc, and the activation of the Wnt/β-catenin pathway. Knockdown of CYP1B1 significantly blocked the ZNF276-mediated effects on cell proliferation, migration and invasion. Lastly, ZNF276 interacted with MAGEB2 which enhanced the binding of ZNF276 at the CYP1B1 promoter, promoted CYP1B1 expression and Wnt signaling activation. Collectively, these findings highlight the oncogenic role of ZNF276 on breast cancer cell proliferation and metastasis. Targeting ZNF276/MAGEB2 axis may serve as a potential therapeutic strategy for breast cancer patients.
Collapse
|
11
|
Kang KA, Yao CW, Piao MJ, Zhen AX, Fernando PDSM, Herath HMUL, Song SE, Cho SJ, Hyun JW. Anticolon Cancer Effect of Korean Red Ginseng via Autophagy- and Apoptosis-Mediated Cell Death. Nutrients 2022; 14:nu14173558. [PMID: 36079818 PMCID: PMC9460327 DOI: 10.3390/nu14173558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) has been used in East Asian traditional medicine for a long time. Korean red ginseng (KRG) is effective against several disorders, including cancer. The cytotoxic effects of KRG extract in terms of autophagy- and apoptosis-mediated cell death and its mechanisms were investigated using human colorectal cancer lines. KRG induced autophagy-mediated cell death with enhanced expression of Atg5, Beclin-1, and LC3, and formed characteristic vacuoles in HCT-116 and SNU-1033 cells. An autophagy inhibitor prevented cell death induced by KRG. KRG generated mitochondrial reactive oxygen species (ROS); antioxidant countered this effect and decreased autophagy. KRG caused apoptotic cell death by increasing apoptotic cells and sub-G1 cells, and by activating caspases. A caspase inhibitor suppressed cell death induced by KRG. KRG increased phospho-Bcl-2 expression, but decreased Bcl-2 expression. Moreover, interaction of Bcl-2 with Beclin-1 was attenuated by KRG. Ginsenoside Rg2 was the most effective ginsenoside responsible for KRG-induced autophagy- and apoptosis-mediated cell death. KRG induced autophagy- and apoptosis-mediated cell death via mitochondrial ROS generation, and thus its administration may inhibit colon carcinogenesis.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
| | - Cheng Wen Yao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
| | - Ao Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
| | | | | | - Seung Eun Song
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Korea
| | - Suk Ju Cho
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Korea
- Correspondence: (S.J.C.); (J.W.H.); Tel.: +82-64-717-2062 (S.J.C.); +82-64-754-3838 (J.W.H.)
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Korea
- Correspondence: (S.J.C.); (J.W.H.); Tel.: +82-64-717-2062 (S.J.C.); +82-64-754-3838 (J.W.H.)
| |
Collapse
|
12
|
Liu C, Li L, Hou G, Lu Y, Gao M, Zhang L. HERC5/IFI16/p53 signaling mediates breast cancer cell proliferation and migration. Life Sci 2022; 303:120692. [PMID: 35671810 DOI: 10.1016/j.lfs.2022.120692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
AIMS This study aims to find differentially expressed ubiquitination-related gene(s) and elucidates their biological significance in breast cancer. MAIN METHODS Differentially expressed genes were profiled in MCF-7 and MDA-MB-231 cells by using PCR array method. Abnormal expression of HERC5 was studied in the cells and in breast cancer specimens via Quantitative Real-time PCR and western blot. Cell proliferation and cell migration abilities were evaluated by using cell counting kits, or through colony formation, wound healing and trans-well assays. HERC5 target proteins were investigated via proteomic, co-immunoprecipitation and western blot methods. Down-stream signaling pathways were investigated through gene expression/knockdown methods. KEY FINDINGS Huge increase of HERC5 expression was found in MCF-7 and MDA-MB-231 cells, knockdown of which repressed the cell proliferation and migration. HERC5 interacted with IFI16, mediated IFI16 ISGylation at K274 and facilitated IFI16 proteasomal degradation. IFI16 acted as a tumor suppressor and to some extent mediated the HERC5 function in the breast cancer (BC) cells. HERC5 was negatively correlated with IFI16 protein, while IFI16 was positively correlated to p53 expression at mRNA and protein levels, which indicates a novel signaling pathway - HERC5/IFI16/p53. HERC5 expression was increased in glucose-starved BC cells and in human breast cancer tissues, accompanied with the decrease of IFI16 and P53. SIGNIFICANCE Our work reveals the abnormal expression of HERC5 and its carcinogenic role in breast cancer cells, which is probably mediated by an HERC5/IFI16/p53 signaling pathway. This work also provides potential diagnostic/therapeutic biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Congcong Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Gang Hou
- Department of Pathology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an 271000, China
| | - Ying Lu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Meng Gao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Tecalco-Cruz AC. Molecular Pathways of Interferon-Stimulated Gene 15: Implications in Cancer. Curr Protein Pept Sci 2021; 22:19-28. [DOI: 10.2174/1389203721999201208200747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Human interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like protein that
can be detected as either free ISG15 or covalently associated with its target proteins through a process
termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokinelike
protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with
implications in some biological processes and pathologies that include cancer. This review highlights
the findings of both free ISG15 and protein ISGylation involved in several molecular pathways,
emerging as central elements in some cancer types.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Programa en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico (UACM), Apdo. Postal 03100, Ciudad de Mexico, Mexico
| |
Collapse
|
14
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
15
|
Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 2020; 11:4382-4406. [PMID: 31284268 PMCID: PMC6660044 DOI: 10.18632/aging.102059] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms, such as DNA methylation, affect tubular maladaptive response after Acute Kidney Injury (AKI) and accelerate renal aging. Upon ischemia/reperfusion (I/R) injury, Complement activation leads to C5a release that mediates damage; however, little is known about the effect of C5a-C5a Receptor (C5aR) interaction in Renal Tubular Epithelial Cells (RTEC). Through a whole-genome DNA methylation analysis in cultured RTEC, we found that C5a induced aberrant methylation, particularly in regions involved in cell cycle control, DNA damage and Wnt signaling. The most represented genes were BCL9, CYP1B1 and CDK6. C5a stimulation of RTEC led to up-regulation of SA-β Gal and cell cycle arrest markers such as p53 and p21. C5a increased also IL-6, MCP-1 and CTGF gene expression, consistent with SASP development. In accordance, in a swine model of renal I/R injury, we found the increased expression of Wnt4 and βcatenin correlating with SA-β Gal, p21, p16 and IL-6 positivity. Administration of Complement Inhibitor (C1-Inh), antagonized SASP by reducing SA-β Gal, p21, p16, IL-6 and abrogating Wnt4/βcatenin activation. Thus, C5a affects the DNA methylation of genes involved in tubular senescence. Targeting epigenetic programs and Complement may offer novels strategies to protect tubular cells from accelerated aging and to counteract progression to Chronic Kidney Disease
Collapse
|
16
|
Baek HS, Kwon YJ, Ye DJ, Cho E, Kwon TU, Chun YJ. CYP1B1 prevents proteasome-mediated XIAP degradation by inducing PKCε activation and phosphorylation of XIAP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118553. [PMID: 31493422 DOI: 10.1016/j.bbamcr.2019.118553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) is a key enzyme that catalyzes the metabolism of 17β-estradiol (E2) into catechol estrogens, such as 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2). CYP1B1 is related to tumor formation and is over-expressed in a variety of cancer cells. In particular, CYP1B1 is highly expressed in hormone-related cancers such as breast cancer, ovarian cancer, or prostate cancer compared to other cancers. However, the detailed mechanisms involving this protein remain unclear. In this study, we demonstrate that CYP1B1 affects X-linked inhibitor of apoptosis protein (XIAP) expression. When CYP1B1 was over-expressed in cells, there was significant increase in the XIAP protein level, whereas the XIAP mRNA level was not affected by CYP1B1 expression. Treatment with 4-OHE2, mainly formed by CYP1B1 activity, also increased XIAP protein levels, whereas treatment with 2-OHE2 did not have a significant effect. Treatment with 4-OHE2 significantly prevented proteasome-mediated XIAP degradation. In addition, phosphorylation of XIAP on serine 87, which is known to stabilize XIAP, was up-regulated by 4-OHE2, indicating that 4-OHE2 affects XIAP stability through XIAP phosphorylation. We also found that phosphorylation of protein kinase C (PKC)ε, which is required for XIAP phosphorylation, increased when cells were treated with 4-OHE2. In summary, our data show that CYP1B1 may play an important role in preventing ubiquitin-proteasome-mediated XIAP degradation through the activation of PKCε signaling in cancer cells.
Collapse
Affiliation(s)
- Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunah Cho
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
Xie Y, Zhong L, Duan D, Li T. Casticin inhibits invasion and proliferation via downregulation of β-catenin and reversion of EMT in oral squamous cell carcinoma. J Oral Pathol Med 2019; 48:897-905. [PMID: 31318467 DOI: 10.1111/jop.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Casticin expresses multiple anti-cancer activities, whereas the effect of casticin on oral squamous cell carcinoma (OSCC) is still unclear. β-catenin signaling plays a crucial role in the epithelial-mesenchymal transition which is closely related to tumorigenesis. Herein, we aimed to study the functions of casticin on invasion and migration of OSCC, and clarify whether the effect of casticin on OSCC has a relationship with β-catenin signaling. METHODS Human OSCC cell lines UM1 and HSC-3 were treated with different concentrations of casticin. The cell viability was evaluated by MTT and soft agar colony formation. Transwell assay and wound-healing assay were performed to measure the ability of cell invasion and migration. The protein expression was assessed by Western blotting. RESULTS Casticin displayed inhibitory activities of cell viability, invasion, and migration on OSCC cell lines. Meanwhile, casticin could reverse EMT process and inhibit the expression of β-catenin in OSCC. Knock-down or overexpression of β-catenin could alter the effect of casticin on OSCC. CONCLUSIONS Casticin impaired invasion and migration of OSCC by inhibition of β-catenin and reversal of EMT and could be a potential anti-cancer bioactive agent.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingyu Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Shah BR, Xu W, Mraz J. Cytochrome P450 1B1: role in health and disease and effect of nutrition on its expression. RSC Adv 2019; 9:21050-21062. [PMID: 35515562 PMCID: PMC9065998 DOI: 10.1039/c9ra03674a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023] Open
Abstract
This review summarizes the available literature stating CYP1B1 to provide the readers with a comprehensive understanding of its role in different diseases, as well as the importance of nutrition in their control in terms of the influence of different nutrients on its expression. CYP1B1, a member of the cytochrome P450 enzyme family is expressed in different human tissues and is known to contribute to different life alarming pathologies. Particularly, till now much attention has been paid to its involvement in the development of primary congenital glaucoma (PCG) and cancer. However, recently there are some reports highlighting CYP1B1 as a potential regulator in energy homeostasis and adipogenesis thus promoting obesity and hypertension as well. Therefore, seeking out effective strategies to modulate the expression of CYP1B1 is a challenging task. In this context, nutrients based strategies will be the best choice as they are mostly harmless and are easily available in one's diet. In conclusion, this article will be helpful in providing a base for further research that is needed to identify the role of CYP1B1 in progression of different diseases, hypertension and obesity in particular, and then to present the effectiveness, mechanisms, and biologic plausibility of nutrients against its expression.
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách 1780 370 05 České Budějovice Czech Republic +420 775022640
| | - Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 People's Republic of China
| | - Jan Mraz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách 1780 370 05 České Budějovice Czech Republic +420 775022640
| |
Collapse
|
19
|
WP1130 Enhances TRAIL-Induced Apoptosis through USP9X-Dependent miR-708-Mediated Downregulation of c-FLIP. Cancers (Basel) 2019; 11:cancers11030344. [PMID: 30862047 PMCID: PMC6469024 DOI: 10.3390/cancers11030344] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
WP1130, a partially selective deubiquitinases (DUB) inhibitor, inhibits the deubiquitinating activities of USP5, USP9X, USP14, USP37, and UCHL1. In this study, we investigate whether WP1130 exerts sensitizing effect on TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. Combinations of WP1130 and TRAIL significantly induced apoptosis in renal carcinoma, lung carcinoma and hepatocellular carcinoma cells, but not in normal cells (human mesangial cells (MC) and normal mouse kidney cells (TCMK-1)). The downregulation of c-FLIP protein expression was involved in combined treatment-induced apoptosis. WP1130-induced c-FLIP downregulation was regulated by microRNA (miR)-708 upregulation via inhibition of USP9X. Interestingly, knockdown of USP9X markedly induced c-FLIP downregulation, upregulation of miR-708 expression and sensitivity to TRAIL. Furthermore, ectopic expression of USP9X prevented c-FLIP downregulation and apoptosis upon combined treatment. In sum, WP1130 sensitized TRAIL-induced apoptosis through miR-708-mediated downregulation of c-FLIP by inhibition of USP9X.
Collapse
|
20
|
Kim SY, Jin CY, Kim CH, Yoo YH, Choi SH, Kim GY, Yoon HM, Park HT, Choi YH. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int J Mol Med 2018; 43:682-692. [PMID: 30483725 PMCID: PMC6317673 DOI: 10.3892/ijmm.2018.3993] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Isorhamnetin, which is a flavonoid predominantly found in fruits and leaves of various plants, including Hippophae rhamnoides L. and Oenanthe javanica (Blume) DC, is known to possess various pharmacological effects. However, the anti‑inflammatory potential of isorhamnetin remains poorly studied. Therefore, the present study aimed to investigate the inhibitory potential of isorhamnetin against inflammatory responses in lipopolysaccharide (LPS)‑stimulated BV2 microglia. To measure the effects of isorhamnetin on inflammatory mediators and cytokines, and reactive oxygen species (ROS) generation, the following methods were used: cell viability assay, griess assay, ELISA, reverse transcriptase‑polymerase chain reaction, flow cytometry, western blotting and immunofluorescence staining. The results revealed that isorhamnetin significantly suppressed LPS‑induced secretion of pro‑inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, without exhibiting significant cytotoxicity. Consistent with these results, isorhamnetin inhibited LPS‑stimulated expression of regulatory enzymes, including inducible NO synthase and cyclooxygenase‑2 in BV2 cells. Isorhamnetin also downregulated LPS‑induced production and expression of pro‑inflammatory cytokines, such as tumor necrosis factor‑α and interleukin‑1β. The mechanism underlying the anti‑inflammatory effects of isorhamnetin was subsequently evaluated; this flavonoid inhibited the nuclear factor (NF)‑κB signaling pathway by disrupting degradation and phosphorylation of inhibitor κB‑α in the cytoplasm and blocking translocation of NF‑κB p65 into the nucleus. In addition, isorhamnetin effectively suppressed LPS‑induced expression of Toll‑like receptor 4 (TLR4) and myeloid differentiation factor 88. It also suppressed the binding of LPS with TLR4 in BV2 cells. Furthermore, isorhamnetin markedly reduced LPS‑induced generation of ROS in BV2 cells, thus indicating a strong antioxidative effect. Collectively, these results suggested that isorhamnetin may suppress LPS‑mediated inflammatory action in BV2 microglia through inactivating the NF‑κB signaling pathway, antagonizing TLR4 and eliminating ROS accumulation. Further studies are required to fully understand the anti‑inflammatory effects associated with the antioxidant capacity of isorhamnetin; however, the findings of the present study suggested that isorhamnetin may have potential benefits in inhibiting the onset and treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shin Young Kim
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Cheol Hong Kim
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong‑A University, Busan 49201, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang, South Gyeongsang 50141, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun Min Yoon
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong‑A University, Busan 49201, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
21
|
Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP. Molecules 2018; 23:molecules23113030. [PMID: 30463333 PMCID: PMC6278439 DOI: 10.3390/molecules23113030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.
Collapse
|
22
|
Seo SU, Min KJ, Woo SM, Seo JH, Kwon TK. HSP70 Acetylation Prevents Combined mTORC1/2 Inhibitor and Curcumin Treatment-Induced Apoptosis. Molecules 2018; 23:molecules23112755. [PMID: 30356017 PMCID: PMC6278488 DOI: 10.3390/molecules23112755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022] Open
Abstract
We previously reported that PP242 (dual inhibitor of mTORC1/2) plus curcumin induced apoptotic cell death through lysosomal membrane permeabilization (LMP)-mediated autophagy. However, the relationship between ER stress and apoptotic cell death by combined PP242 and curcumin treatment remains unknown. In the present study, we found that combined PP242 and curcumin treatment induced cytosolic Ca2+ release and ER stress. Interestingly, pretreatment with the chemical chaperones (TUDCA and 4-PBA) and knockdown of CHOP and ATF4 by siRNA did not abolish combined treatment-induced apoptosis in renal carcinoma cells. These results suggest that combined treatment with mTORC1/2 inhibitor and curcumin induces ER stress which is not essential for apoptotic cell death. Furthermore, overexpression of HSP70 significantly inhibited PP242 plus curcumin-induced LMP and apoptosis, but the protective effect was abolished by K77R mutation of acetylation site of HSP70. Taken together, our results reveal that regulation of HSP70 through K77 acetylation plays role in combined PP242 and curcumin treatment-induced apoptosis.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| |
Collapse
|
23
|
Shahriyar SA, Woo SM, Seo SU, Min KJ, Kwon TK. Cepharanthine Enhances TRAIL-Mediated Apoptosis Through STAMBPL1-Mediated Downregulation of Survivin Expression in Renal Carcinoma Cells. Int J Mol Sci 2018; 19:ijms19103280. [PMID: 30360403 PMCID: PMC6214104 DOI: 10.3390/ijms19103280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Cepharanthine (CEP) is a natural plant alkaloid, and has anti-inflammatory, antineoplastic, antioxidative and anticancer properties. In this study, we investigated whether CEP could sensitize renal carcinoma Caki cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. CEP alone and TRAIL alone had no effect on apoptosis. However, combined CEP and TRAIL treatment markedly enhanced apoptotic cell death in cancer cells, but not in normal cells. CEP induced downregulation of survivin and cellular-FLICE inhibitory protein (c-FLIP) expression at post-translational levels. Ectopic expression of survivin blocked apoptosis by combined treatment with CEP plus TRAIL, but not in c-FLIP overexpression. Interestingly, CEP induced survivin downregulation through downregulation of deubiquitin protein of STAM-binding protein-like 1 (STAMBPL1). Overexpression of STAMBPL1 markedly recovered CEP-mediated survivin downregulation. Taken together, our study suggests that CEP sensitizes TRAIL-mediated apoptosis through downregulation of survivin expression at the post-translational levels in renal carcinoma cells.
Collapse
Affiliation(s)
- Sk Abrar Shahriyar
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
24
|
Wang Y, Ding Q, Lu YC, Cao SY, Liu QX, Zhang L. Interferon-stimulated gene 15 enters posttranslational modifications of p53. J Cell Physiol 2018; 234:5507-5518. [PMID: 30317575 DOI: 10.1002/jcp.27347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu-Chen Lu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Shi-Yang Cao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Xue Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells. Molecules 2018; 23:molecules23092264. [PMID: 30189637 PMCID: PMC6225471 DOI: 10.3390/molecules23092264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Niclosamide is used to treat intestinal parasite infections, as being an anthelmintic drug. Recently, several papers suggest the niclosamide inhibits multiple signaling pathways, which are highly activated and mutated in cancer. Here, niclosamide was evaluated for identifying strategies to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. Although niclosamide (100–200 nM) alone did not bring about cell death, combinations of niclosamide and TRAIL led to apoptotic cell death in carcinoma cells, but not in normal cells. Niclosamide markedly increased DR5 protein levels, including cell-surface DR5, and decreased c-FLIP protein levels. Down-regulation of DR5 by specific small interfering RNA (siRNA) and ectopic expression of c-FLIP markedly blocked niclosamide plus TRAIL-induced apoptosis. Our findings provide that niclosamide could overcome resistance to TRAIL through up-regulating DR5 on the cell surface and down-regulating c-FLIP in cancer cells. Taken together, niclosamide may be an attractive candidate to overcome TRAIL resistance.
Collapse
|
26
|
Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress. Exp Mol Med 2018; 50:1-11. [PMID: 30120227 PMCID: PMC6098103 DOI: 10.1038/s12276-018-0138-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
Multiple cancer cells highly express cathepsin S, which has pro-tumoral effects. However, it was previously unknown whether knockdown or a pharmacological inhibitor (ZFL) of cathepsin S acts as an inducer of ER stress. Here, ZFL and knockdown of cathepsin S markedly induced ER stress through the up-regulation of calcium levels in the cytosol. Induction of calcium levels by inhibition of cathepsin S is markedly blocked by an inhibitor of the IP3 receptor and the ryanodine receptor Ca2+ channel in the ER, but an inhibitor of a mitochondrial Ca2+ uniporter had no effect on ZFL-induced calcium levels. Furthermore, production of mitochondrial ROS by ZFL was associated with an increase in cytosolic calcium levels. ZFL-mediated ER stress enhanced anti-cancer drug-induced apoptotic cell death, and pretreatment with chemical chaperones or down-regulation of ATF4 and CHOP by small interfering RNA markedly reduced ZFL plus oxaliplatin-induced apoptosis. Taken together, our findings reveal that inhibition of cathepsin S is an inducer of ER stress; these findings may contribute to the enhancement of therapeutic efficiency in cancer cells. A drug that inhibits a key cancer enzyme could be used in combination with anti-cancer drugs to improve sensitivity to treatment. The intracellular endoplasmic reticulum (ER) is involved in several vital processes in cells, including folding and processing proteins. Taeg Kyu Kwon at Keimyung University, Daegu, South Korea, and co-workers have demonstrated how inhibition of cathepsin S, which is expressed in many cancer cells, induces ER stress. In trials on human kidney cancer cells grafted onto mice and in vitro, the team found that ZFL (cathepsin S inhibitor) triggered transient ER stress by increasing calcium levels inside cells. Subsequent treatment with the anti-cancer drug oxaliplatin resulted in increased cancer cell death.
Collapse
|
27
|
Garcinol Enhances TRAIL-Induced Apoptotic Cell Death through Up-Regulation of DR5 and Down-Regulation of c-FLIP Expression. Molecules 2018; 23:molecules23071614. [PMID: 30004456 PMCID: PMC6099973 DOI: 10.3390/molecules23071614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Garcinol is a polyisoprenylated benzophenone derived from the Garcinia indica fruit that possess potential therapeutic effects such as inhibition of inflammation and tumor expansion. Here, we investigated whether garcinol induces TRAIL sensitization in renal carcinoma cells. Single treatment with garcinol or TRAIL did not effect on apoptosis. However, combined treatment with garcinol plus TRAIL significantly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung carcinoma (A549), and hepatoma (SK-Hep1) cells. In contrast, garcinol plus TRAIL did not alter cell viability in normal cells. Garcinol plus TRAIL induced up-regulation of DR5 and down-regulation of c-FLIP expression at post-translational levels. Furthermore, knock-down of DR5 by siRNA and ectopic expression of c-FLIP blocked apoptotic cell death induced by garcinol plus TRAIL. Overall, our study provides evidence that garcinol can be exploited as a potential TRAIL sensitizer.
Collapse
|
28
|
Seo SU, Woo SM, Lee HS, Kim SH, Min KJ, Kwon TK. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy. Oncogene 2018; 37:5205-5220. [PMID: 29849119 PMCID: PMC6147804 DOI: 10.1038/s41388-018-0345-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/09/2022]
Abstract
mTOR is an important regulator of cell growth and forms two complexes, mTORC1/2. In cancer, mTOR signaling is highly activated, and the regulation of this signaling, as an anti-cancer strategy, has been emphasized. However, PP242 (inhibitor of mTORC1 and mTORC2) alone did not induce human renal carcinoma cell death. In this study, we found that PP242 alone did not alter cell viability, but combined curcumin and PP242 treatment induced cell death. Combined PP242 and curcumin treatment induced Bax activation and decreased expression of Mcl-1 and Bcl-2. Furthermore, co-treatment with PP242 and curcumin-induced the downregulation of the Rictor (an mTORC2 complex protein) and Akt protein levels, and ectopic overexpression of Rictor or Akt inhibited PP242 plus curcumin induced cell death. Downregulation of Rictor increased cytosolic Ca2+ release from endoplasmic reticulum, which led to lysosomal damage in PP242 plus curcumin-treated cells. Furthermore, damaged lysosomes induced autophagy. Autophagy inhibitors markedly inhibited cell death. Finally, combined curcumin and PP242 treatment reduced tumor growth and induced cell death in xenograft models. Altogether, our results reveal that combined PP242 and curcumin treatment could induce autophagy-mediated cell death by reducing the expression of Rictor and Akt in renal carcinoma cells.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, South Korea.
| |
Collapse
|
29
|
Seo SU, Woo SM, Min KJ, Kwon TK. Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-induced apoptosis through upregulation of Bim expression. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Jeon MY, Min KJ, Woo SM, Seo SU, Kim S, Park JW, Kwon TK. Volasertib Enhances Sensitivity to TRAIL in Renal Carcinoma Caki Cells through Downregulation of c-FLIP Expression. Int J Mol Sci 2017; 18:ijms18122568. [PMID: 29186071 PMCID: PMC5751171 DOI: 10.3390/ijms18122568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays major roles in cell cycle control and DNA damage response. Therefore, PLK1 has been investigated as a target for cancer therapy. Volasertib is the second-in class dihydropteridinone derivate that is a specific PLK1 inhibitor. In this study, we examined that combining PLK1 inhibitor with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) would have an additive and synergistic effect on induction of apoptosis in cancer cells. We found that volasertib alone and TRAIL alone had no effect on apoptosis, but the combined treatment of volasertib and TRAIL markedly induced apoptosis in Caki (renal carcinoma), A498 (renal carcinoma) and A549 (lung carcinoma) cells, but not in normal cells (human skin fibroblast cells and mesangial cells). Combined treatment induced accumulation of sub-G1 phase, DNA fragmentation, cleavage of poly (ADP-ribose) polymerase (PARP) and activation of caspase 3 activity in Caki cells. Interestingly, combined treatment induced downregulation of cellular-FLICE-inhibitory protein (c-FLIP) expression and ectopic expression of c-FLIP markedly blocked combined treatment-induced apoptosis. Therefore, this study demonstrates that volasertib may sensitize TRAIL-induced apoptosis in Caki cells via downregulation of c-FLIP.
Collapse
Affiliation(s)
- Mi-Yeon Jeon
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seon Min Woo
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Seung Un Seo
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Shin Kim
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Jong-Wook Park
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Mediine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea.
| |
Collapse
|
31
|
Woo SM, Min KJ, Seo SU, Kim S, Park JW, Song DK, Lee HS, Kim SH, Kwon TK. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin. Oncotarget 2017; 8:106672-106684. [PMID: 29290980 PMCID: PMC5739765 DOI: 10.18632/oncotarget.22508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dae Kyu Song
- Department of Physiology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
32
|
Min KJ, Um HJ, Seo SU, Woo SM, Kim S, Park JW, Lee HS, Kim SH, Choi YH, Lee TJ, Kwon TK. Angelicin potentiates TRAIL-induced apoptosis in renal carcinoma Caki cells through activation of caspase 3 and down-regulation of c-FLIP expression. Drug Dev Res 2017; 79:3-10. [PMID: 29044596 DOI: 10.1002/ddr.21414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/23/2017] [Indexed: 12/13/2022]
Abstract
Preclinical Research & Development Angelicin is a furocoumarin derived from Psoralea corylifolia L. fruit that has anti-inflammatory and anti-tumor activity. In the present study, the effect of angelicin in enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death was studied in Caki (renal carcinoma) cells. Angelicin alone and TRAIL alone had no effect on apoptosis, but in combination these compounds markedly induced apoptosis in the cancer cell lines while not inducing apoptosis in normal cells. The combination treatment induced accumulation of the sub-G1 population, DNA fragmentation, and activated caspase 3 activity in Caki cells, induced down-regulation of c-FLIP expression post-translationally, and over-expression of c-FLIP markedly blocked apoptosis induced by combined treatment with angelicin plus TRAIL. This study provides evidence that angelicin might be a TRAIL sensitizer.
Collapse
Affiliation(s)
- Kyoung-Jin Min
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Hee Jung Um
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Seung Un Seo
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Seon Min Woo
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Shin Kim
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Jong-Wook Park
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, South Korea
| |
Collapse
|