1
|
Chen Z, Yang X, Chen Z, Li M, Wang W, Yang R, Wang Z, Ma Y, Xu Y, Ao S, Liang L, Cai C, Wang C, Deng T, Gu D, Zhou H, Zeng G. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. BMC Med 2023; 21:402. [PMID: 37880708 PMCID: PMC10601128 DOI: 10.1186/s12916-023-03094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.
Collapse
Affiliation(s)
- Zude Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoshuang Yang
- Department of Plastic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zugen Chen
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minzhao Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Riwei Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zuomin Wang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxiang Ma
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shan Ao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leqi Liang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hongqing Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China.
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Abraham-Miranda J, Awasthi S, Yamoah K. Immunologic disparities in prostate cancer between American men of African and European descent. Crit Rev Oncol Hematol 2021; 164:103426. [PMID: 34273500 DOI: 10.1016/j.critrevonc.2021.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Health disparities between American men of African and European descent (AA and EA, respectively) can be attributed to multiple factors, including disparities in socioeconomic status, access to healthcare, lifestyle, ancestry, and molecular aberrations. Numerous clinical trials and research studies are being performed to identify new and better therapeutic approaches to detect and treat prostate cancer. Of potential concern is the fact that the majority of the patients enrolled on these trials are EA. This disproportionate enrollment of EA could have implications when disease management recommendations are proposed without regard to the existing disparities in prostate cancer between races. With increasing advancements in immunotherapies, the immunological disparities between men of diverse ethnicities will need to be fully explored to develop novel and effective therapeutic approaches for prostate cancer patients globally. To help address this need, this review fully describes inequalities in prostate cancer at the immunological level between AA and EA.
Collapse
Affiliation(s)
- Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Chakravarty D, Huang L, Kahn M, Tewari AK. Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urol Clin North Am 2020; 47:487-510. [PMID: 33008499 DOI: 10.1016/j.ucl.2020.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of immunotherapy has revolutionized cancer treatment. Prostate cancer has an immunosuppressive microenvironment and a low tumor mutation burden, resulting in low neoantigen expression. The consensus was that immunotherapy would be less effective in prostate cancer. However, recent studies have reported that prostate cancer does have a high number of DNA damage and repair gene defects. Immunotherapies that have been tested in prostate cancer so far have been mainly vaccines and checkpoint inhibitors. A combination of genomically targeted therapies, with approaches to alleviate immune response and thereby make the tumor microenvironment immunologically hot, is promising.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Huang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Matthew Kahn
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashutosh K Tewari
- Department of Urology and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Wallace TJ, Qian J, Avital I, Bay C, Man YG, Wellman LL, Moskaluk C, Troyer D, Ramnani D, Stojadinovic A. Technical Feasibility of Tissue Microarray (TMA) Analysis of Tumor-Associated Immune Response in Prostate Cancer. J Cancer 2018; 9:2191-2202. [PMID: 29937939 PMCID: PMC6010688 DOI: 10.7150/jca.22846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/28/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: The androgen receptor (AR) regulates immune-related epithelial-to-mesenchymal transition (EMT), and prostate cancer (PCa) metastasis. Primary tumor-infiltrating lymphocytes (TILs) [CD3+, CD4+, and CD8+ TILs] are potential prognostic indicators in PCa, and variations may contribute to racial disparities in tumor biology and PCa outcomes. Aim: To assess the technical feasibility of tumor microarray (TMA)-based methods to perform multi-marker TIL profiling in primary resected PCa. Methods: Paraffin-embedded tissue cores of histopathologically-confirmed primary PCa (n = 40; 1 TMA tissue specimen loss) were arrayed in triplicate on TMAs. Expression profiles of AR, CD3+, CD4+, and CD8+ TILs in normal prostate, and the center and periphery of both the tumor-dominant nodule and highest Gleason grade were detected by IHC and associated with clinical and pathological data using standard statistical methodology. An independent pathologist, blinded to the clinical data, scored all samples (percent and intensity of positive cells). Results: TMAs were constructed from 21 (53.8%) Black and 18 (46.2%) White males with completely-resected, primarily pT2 stage PCa [pT2a (n = 3; 7.7%); pT2b (n = 2; 5.1%); pT2c (n = 27; 69.2%); pT3a (n = 5; 12.8%); mean pre-op PSA = 8.17 ng/ml]. The CD3, CD4, CD8, and CD8/CD3 cellular protein expression differed from normal in the periphery of the dominant nodule, the center of the highest Gleason grade, and the periphery of the highest Gleason grade (P < 0.05). Correlations between TIL expression in the center and periphery of the dominant nodule, with corresponding center and periphery of the highest Gleason grade, respectively, were robust, and the magnitude of these correlations differed markedly by race (P < 0.05). Conclusions: Multi-marker (AR, CD3, CD4, CD8) profiling with IHC analysis of TMAs consisting of primary, non-metastatic resected prostate cancer is technically feasible in this pilot study. Future studies will evaluate primary tumor immunoscore using semi-quantitative, IHC-based methodology to assess differences in the spectrum, quantity, and/or localization of TILs, and to gain insights into racial disparities in PCa tumor biology and clinical outcomes.
Collapse
Affiliation(s)
| | - Junqi Qian
- Virginia Urology, Richmond, Virginia, U.S.A
| | - Itzhak Avital
- Soroka University Center for Advanced Cancer Care, Ber Sheva, Israel
| | - Curt Bay
- A.T. Still University, Mesa, Arizona, U.S.A
| | - Yan-Gao Man
- National Medical Centre of Colorectal Disease, Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (TCM), Nanjing, China
| | | | - Chris Moskaluk
- University of Virginia, Charlottesville, Virginia, U.S.A
| | - Dean Troyer
- Eastern Virginia Medical School, Norfolk, Virginia, U.S.A
| | | | | |
Collapse
|
6
|
Spinal Anesthesia is Associated with Lower Recurrence Rates after Resection of Nonmuscle Invasive Bladder Cancer. J Urol 2018; 199:940-946. [DOI: 10.1016/j.juro.2017.11.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
7
|
Atherton MJ, Stephenson KB, Tzelepis F, Bakhshinyan D, Nikota JK, Son HH, Jirovec A, Lefebvre C, Dvorkin-Gheva A, Ashkar AA, Wan Y, Stojdl DF, Belanger EC, Breau RH, Bell JC, Saad F, Singh SK, Diallo JS, Lichty BD. Transforming the prostatic tumor microenvironment with oncolytic virotherapy. Oncoimmunology 2018; 7:e1445459. [PMID: 29900060 PMCID: PMC5993491 DOI: 10.1080/2162402x.2018.1445459] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) was estimated to have the second highest global incidence rate for male non-skin tumors and is the fifth most deadly in men thus mandating the need for novel treatment options. MG1-Maraba is a potent and versatile oncolytic virus capable of lethally infecting a variety of prostatic tumor cell lines alongside primary PCa biopsies and exerts direct oncolytic effects against large TRAMP-C2 tumors in vivo. An oncolytic immunotherapeutic strategy utilizing a priming vaccine and intravenously administered MG1-Maraba both expressing the human six-transmembrane antigen of the prostate (STEAP) protein generated specific CD8+ T-cell responses against multiple STEAP epitopes and resulted in functional breach of tolerance. Treatment of mice with bulky TRAMP-C2 tumors using oncolytic STEAP immunotherapy induced an overt delay in tumor progression, marked intratumoral lymphocytic infiltration with an active transcriptional profile and up-regulation of MHC class I. The preclinical data generated here offers clear rationale for clinically evaluating this approach for men with advanced PCa.
Collapse
Affiliation(s)
- Matthew J. Atherton
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Fanny Tzelepis
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Hwan Hee Son
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Anna Jirovec
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Charles Lefebvre
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - David F. Stojdl
- Turnstone Biologics, Ottawa, Canada
- Stojdl Lab, CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Eric C. Belanger
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | | | - John C. Bell
- Turnstone Biologics, Ottawa, Canada
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Fred Saad
- Department of Surgery, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| | - Sheila K. Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Jean-Simone Diallo
- Centre for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada
| | - Brian D. Lichty
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
- Turnstone Biologics, Ottawa, Canada
| |
Collapse
|
8
|
Immunotherapy as a Promising Treatment for Prostate Cancer: A Systematic Review. J Immunol Res 2017; 2017:4861570. [PMID: 29109964 PMCID: PMC5646317 DOI: 10.1155/2017/4861570] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer treatment is currently based on surgical removal, radiotherapy, and hormone therapy. In recent years, another therapeutic method has emerged—immunological treatment. Immunotherapy modulates and strengthens one's immune responses against cancer. Neoplastic cells naturally escape from the control of the immune system, and the main goal of immune therapy is to bring the control back. Satisfying outcomes after treatment of advanced melanoma and lung cancer suggest a great potential of immunotherapy as an approach for other tumors' treatment, especially in patients primarily introduced to palliative care. After initial clinical trials, immunotherapy seems to have different side effects than chemotherapy. Prostate cancer was the first neoplasm in which a specific vaccine significantly improved survival. There is a tremendous potential for synergistic combinations of immunotherapy with conventional cancer treatments. A combination of several drugs or methods can be a key in radical treatment of metastatic prostate cancer as demonstrated by preliminary studies.
Collapse
|
9
|
Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol 2017; 113:292-303. [PMID: 28427519 DOI: 10.1016/j.critrevonc.2017.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common malignant neoplasm in men worldwide and the fifth cause of cancer-related death. Although multiple new agents have been approved for metastatic castration resistant prostate cancer over the last decade, it is still an incurable disease. New strategies to improve cancer control are needed and agents targeting the immune system have shown encouraging results in many tumor types. Despite being attractive for immunotherapies due to the expression of various tumor associated antigens, the microenvironment in prostate cancer is relatively immunosuppressive and may be responsible for the failures of various agents targeting the immune system in this disease. To date, sipuleucel-T is the only immunotherapy that has shown significant clinical efficacy in this setting, although the high cost and potential trial flaws have precluded its widespread incorporation into clinical practice. Issues with patient selection and trial design may have contributed to the multiple failures of immunotherapy in prostate cancer and provides an opportunity to tailor future studies to evaluate these agents more accurately. We have reviewed all the completed immune therapy trials in prostate cancer and highlight important considerations for the next generation of clinical trials.
Collapse
Affiliation(s)
- Manuel Caitano Maia
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), Av. Dr Arnaldo, 251, Cerqueira César, CEP 01246-000, São Paulo, Brazil.
| | - Aaron R Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, 610 University Ave, Toronto, ON, Canada; Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir#3172, Toronto, ON, Canada
| |
Collapse
|
10
|
Mai TJ, Ma R, Li Z, Bi SC. Construction of a fusion plasmid containing the PSCA gene and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and its anti-tumor effect in an animal model of prostate cancer. ACTA ACUST UNITED AC 2016; 49:e5620. [PMID: 27783810 PMCID: PMC5089234 DOI: 10.1590/1414-431x20165620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/19/2016] [Indexed: 11/30/2022]
Abstract
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding, and which has a greater affinity. Fusion of specific antigens to extracellular domain of CTLA4 represents a promising approach to increase the immunogenicity of DNA vaccines. In this study, we evaluated this interesting approach for CTLA4 enhancement on prostate stem cell antigen (PSCA)-specific immune responses and its anti-tumor effects in a prostate cancer mouse model. Consequently, we constructed a DNA vaccine containing the PSCA and the CTLA-4 gene. Vaccination with the CTLA4-fused DNA not only induced a much higher level of anti-PSCA antibody, but also increased PSCA-specific T cell response in mice. To evaluate the anti-tumor efficacy of the plasmids, murine models with PSCA-expressing tumors were generated. After injection of the tumor-bearing mouse model, the plasmid carrying the CTLA4 and PSCA fusion gene showed stronger inhibition of tumor growth than the plasmid expressing PSCA alone. These observations emphasize the potential of the CTLA4-fused DNA vaccine, which could represent a promising approach for tumor immunotherapy.
Collapse
Affiliation(s)
- T J Mai
- Department of Urology, China Meitan General Hospital, Beijing, China
| | - R Ma
- Department of Urology, China Meitan General Hospital, Beijing, China
| | - Z Li
- Department of Urology, China Meitan General Hospital, Beijing, China
| | - S C Bi
- Department of Urology, China Meitan General Hospital, Beijing, China
| |
Collapse
|