1
|
Abstract
Burn-induced coagulopathy is not well understood, and consensus on diagnosis, prevention, and treatments are lacking. In this review, literature on burn-induced (and associated) coagulopathy is presented along with the current understanding of the effects of burn injury on the interactions among coagulation, fibrinolysis, and inflammation in the acute resuscitative phase and reconstructive phase of care. The role of conventional tests of coagulopathy and functional assays like thromboelastography or thromboelastometry will also be discussed. Finally, reported methods for the prevention and treatment of complications related to burn-induced coagulopathy will be reviewed.
Collapse
|
2
|
Burmeister DM, Smith SL, Muthumalaiappan K, Hill DM, Moffatt LT, Carlson DL, Kubasiak JC, Chung KK, Wade CE, Cancio LC, Shupp JW. An Assessment of Research Priorities to Dampen the Pendulum Swing of Burn Resuscitation. J Burn Care Res 2020; 42:113-125. [PMID: 33306095 DOI: 10.1093/jbcr/iraa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On June 17 to 18, 2019, the American Burn Association, in conjunction with Underwriters Laboratories, convened a group of experts on burn resuscitation in Washington, DC. The goal of the meeting was to identify and discuss novel research and strategies to optimize the process of burn resuscitation. Patients who sustain a large thermal injury (involving >20% of the total body surface area [TBSA]) face a sequence of challenges, beginning with burn shock. Over the last century, research has helped elucidate much of the underlying pathophysiology of burn shock, which places multiple organ systems at risk of damage or dysfunction. These studies advanced the understanding of the need for fluids for resuscitation. The resultant practice of judicious and timely infusion of crystalloids has improved mortality after major thermal injury. However, much remains unclear about how to further improve and customize resuscitation practice to limit the morbidities associated with edema and volume overload. Herein, we review the history and pathophysiology of shock following thermal injury, and propose some of the priorities for resuscitation research. Recommendations include: studying the utility of alternative endpoints to resuscitation, reexamining plasma as a primary or adjunctive resuscitation fluid, and applying information about inflammation and endotheliopathy to target the underlying causes of burn shock. Undoubtedly, these future research efforts will require a concerted effort from the burn and research communities.
Collapse
Affiliation(s)
- David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Susan L Smith
- The Warden Burn Center, Orlando Regional Medical Center, Orlando, Florida
| | | | - David M Hill
- Firefighters' Burn Center, Regional One Health, Memphis, Tennessee
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Deborah L Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John C Kubasiak
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Charles E Wade
- Center for Translational Injury Research, and Department of Surgery, McGovern School of Medicine and The John S. Dunn Burn Center, Memorial Herman Hospital, Houston, Texas
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
3
|
Kowal-Vern A, Dennis AJ, Bourdon P, Casey LE, Latenser BA. Bronchoalveolar lavage and plasma Antithrombin and cytokines in inhalation and burn injury: a pilot study. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2020; 10:255-262. [PMID: 33224614 PMCID: PMC7675199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Systemic inflammatory response syndrome (SIRS) is initiated during the acute phase of thermal injury. The objective was to determine the SIRS impact on cytokine and Antithrombin (AT) levels in smoke inhalation and burn injury. This observational pilot study compared plasma and bronchoalveolar lavage fluid (BAL) cytokine and AT levels in the first six days post smoke inhalation and burn injury. Twenty-five patients, 14 with inhalation + burn injury > 10% total body surface area (TBSA) and 11 with inhalation injury and ≤ 10% TBSA participated. Human Th1/Th2 cytometric bead array kit from BD Biosciences Pharmingen determined cytokine levels; AT levels with Sigma Diagnostics and spectrophotometry. Results indicated no significant age difference between the two groups (42.1 ± 7.2) versus 49.6 ± 6.4 years. On admission, the inhalation group had 5.4 ± 3.9% TBSA compared to 35.0 ± 22.2% TBSA in the inhalation + burn group, P < 0.001. Comparing groups, AT plasma levels were significantly decreased (P = 0.025) and IL-2 levels significantly increased (P = 0.025) in the inhalation + burn group compared to the inhalation group; there was no significant difference in BAL AT or cytokine levels. Combined group plasma AT levels (65.41 ± 4.44%) were significantly increased compared to BAL AT levels (1.06 ± 0.71%), P < 0.001. In contrast, BAL TNF-α levels (35.61 ± 16.01 pg/ml) were significantly increased in relation to the plasma levels (4.68 ± 1.27 pg/ml), P = 0.02. On days 1-2, AT plasma levels were significantly decreased in the inhalation + burn group (41.01 ± 5.24%) compared to the inhalation group (81.02 ± 10.99%), P = 0.002. IL-6 plasma levels were higher in the inhalation + burn group compared to the inhalation group on admission, but both levels decreased by days 3-6. IL-6 BAL levels were elevated in both groups on days 1-2 and decreased by days 3-6. In the first six days of resuscitation, all plasma cytokines were increased in the two groups compared to controls. AT plasma and BAL levels were significantly reduced in both groups, contributing to the coagulopathy. Increased BAL TNF-α and IL-6 levels may have contributed to the pulmonary perturbations during the initial SIRS response in both groups.
Collapse
Affiliation(s)
- Areta Kowal-Vern
- Department of Research, Arizona Burn Center, Valleywise Health Medical CenterPhoenix, AZ, USA
| | - Andrew J Dennis
- Burn Center, Department of Trauma, John H. Stroger Hospital of Cook CountyChicago, IL, USA
| | - Paul Bourdon
- Department of Mathematics, University of VirginiaCharlottesville, VA, USA
| | | | - Barbara A Latenser
- Burn Center, Department of Trauma, John H. Stroger Hospital of Cook CountyChicago, IL, USA
| |
Collapse
|
4
|
Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, Lopez JA, Sastre-Oliva T, Gil-Dones F, Vazquez J, Arevalo JM, Mourino-Alvarez L, Barderas MG. Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Adv Wound Care (New Rochelle) 2020; 9:277-294. [PMID: 32226651 PMCID: PMC7099418 DOI: 10.1089/wound.2019.0968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe pressure ulcers (PUs) do not respond to conservative wound therapy and need surgical repair. To better understand the pathogenesis and to advance on new therapeutic options, we focused on the proteomic analysis of PU, which offers substantial opportunities to identify significant changes in protein abundance during the course of PU formation in an unbiased manner. Approach: To better define the protein pattern of this pathology, we performed a proteomic approach in which we compare severe PU tissue from spinal cord injury (SCI) patients with control tissue from the same patients. Results: We found 76 proteins with difference in abundance. Of these, 10 proteins were verified as proteins that define the pathology: antithrombin-III, alpha-1-antitrypsin, kininogen-1, alpha-2-macroglobulin, fibronectin, apolipoprotein A-I, collagen alpha-1 (XII) chain, haptoglobin, apolipoprotein B-100, and complement factor B. Innovation: This is the first study to analyze differential abundance protein of PU tissue from SCI patients using high-throughput protein identification and quantification by tandem mass tags followed by liquid chromatography tandem mass spectrometry. Conclusion: Differential abundance proteins are mainly involved in tissue regeneration. These proteins might be considered as future therapeutic options to enhance the physiological response and permit cellular repair of damaged tissue.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Juan Antonio Lopez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Felix Gil-Dones
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Jesus Vazquez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | | | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| |
Collapse
|
5
|
Lang TC, Zhao R, Kim A, Wijewardena A, Vandervord J, Xue M, Jackson CJ. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns. Adv Wound Care (New Rochelle) 2019; 8:607-633. [PMID: 31827977 PMCID: PMC6904939 DOI: 10.1089/wound.2019.0963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Significance: Burns are debilitating, life threatening, and difficult to assess and manage. Recent advances in assessment and management have occurred since a comprehensive review of the care of patients with severe burns was last published, which may influence research and clinical practice. Recent Advances: Recent advances have occurred in the understanding of burn pathophysiology, which has led to the identification of potential biomarkers of burn severity, such as protein C. There is new evidence about the potential superiority of natural colloids over crystalloids during fluid resuscitation, and new evidence about components of initial and perioperative management, including an improved understanding of pain following burns. Critical Issues: The limitations of the clinical examination highlight the need for imaging and biomarkers to assist in estimations of burn severity. Fluid resuscitation reduces mortality, although there is conjecture over the ideal method. The subsequent perioperative period is associated with significant morbidity and the evidence for preventing and treating pain, infection, and fluid overload while maximizing wound healing potential is described. Future Directions: Promising developments are ongoing in imaging technology, histopathology, biomarkers, and wound healing adjuncts such as hyperbaric oxygen therapy, topical negative pressure therapy, stem cell treatments, and skin substitutes. The greatest benefit from further research on management of patients with burns would most likely be derived from the elucidation of optimal fluid resuscitation protocols, pain management protocols, and surgical techniques from randomized controlled trials.
Collapse
Affiliation(s)
- Thomas Charles Lang
- Department of Anesthesia, Prince of Wales and Sydney Children's Hospitals, Randwick, Australia
| | - Ruilong Zhao
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | - Albert Kim
- Department of Critical Care Medicine, Royal North Shore Hospital, St. Leonards, Australia
| | - Aruna Wijewardena
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - John Vandervord
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - Meilang Xue
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | | |
Collapse
|
6
|
Yadav VK, Singh PK, Agarwal V, Singh SK. Crosstalk between Platelet and Bacteria: A Therapeutic Prospect. Curr Pharm Des 2019; 25:4041-4052. [PMID: 31553286 DOI: 10.2174/1381612825666190925163347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Platelets are typically recognized for their roles in the maintenance of hemostasis and vascular wall repair to reduce blood loss. Beyond hemostasis, platelets also play a critical role in pathophysiological conditions like atherosclerosis, stroke, thrombosis, and infections. During infection, platelets interact directly and indirectly with bacteria through a wide range of cellular and molecular mechanisms. Platelet surface receptors such as GPIbα, FcγRIIA, GPIIbIIIa, and TLRs, etc. facilitate direct interaction with bacterial cells. Besides, the indirect interaction between platelet and bacteria involves host plasma proteins such as von Willebrand Factor (vWF), fibronectin, IgG, and fibrinogen. Bacterial cells induce platelet activation, aggregation, and thrombus formation in the microvasculature. The activated platelets induce the Neutrophil Extracellular Traps (NETs) formation, which further contribute to thrombosis. Thus, platelets are extensively anticipated as vital immune modulator cells during infection, which may further lead to cardiovascular complications. In this review, we cover the interaction mechanisms between platelets and bacteria that may lead to the development of thrombotic disorders. Platelet receptors and other host molecules involved in such interactions can be used to develop new therapeutic strategies to combat against infection-induced cardiovascular complications. In addition, we highlight other receptor and enzyme targets that may further reduce infection-induced platelet activation and various pathological conditions.
Collapse
Affiliation(s)
- Vivek K Yadav
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Pradeep K Singh
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Vishnu Agarwal
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sunil K Singh
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Wang T, Jones JD, Niyonshuti II, Agrawal S, Gundampati RK, Kumar TKS, Quinn KP, Chen J. Biocompatible, Injectable Anionic Hydrogels Based on Poly(Oligo Ethylene Glycol Monoacrylate‐
co
‐Acrylic Acid) for Protein Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tengjiao Wang
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| | - Jake D. Jones
- Department of Biomedical EngineeringUniversity of Arkansas Fayetteville AR 72701 USA
| | - Isabelle I. Niyonshuti
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| | - Shilpi Agrawal
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| | - Ravi K. Gundampati
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| | | | - Kyle P. Quinn
- Department of Biomedical EngineeringUniversity of Arkansas Fayetteville AR 72701 USA
| | - Jingyi Chen
- Department of Chemistry and BiochemistryUniversity of Arkansas Fayetteville AR 72701 USA
| |
Collapse
|
8
|
Zhang F, Zhang D, Cheng K, Zhou Z, Liu S, Chen L, Hu Y, Mao C, Liu S. Spontaneous evolution of human skin fibroblasts into wound-healing keratinocyte-like cells. Theranostics 2019; 9:5200-5213. [PMID: 31410210 PMCID: PMC6691578 DOI: 10.7150/thno.31526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Producing keratinocyte cells (KCs) in large scale is difficult due to their slow proliferation, disabling their use as seed cells for skin regeneration and wound healing. Cell reprogramming is a promising inducer-based approach to KC production but only reaches very low cellular conversion. Here we reported a unique cellular conversion phenomenon, where human skin fibroblasts (FBs) were spontaneously converted into keratinocyte-like cells (KLCs) over the time without using any inducers. Methods: FBs were routinely cultured for more than 120 days in regular culture medium. Characteristics of KLCs were checked at the molecular and cellular level. Then the functionality and safety of the KLCs were verified by wound healing and tumorigenicity assay, respectively. To identify the mechanism of the cell conversion phenomenon, high-throughput RNA sequencing was also performed. Results: The global conversion started on day 90 and reached 90% on day 110. The KLCs were as functional and effective as KCs in wound healing without causing oncogenicity. The conversion was regulated via a PI3K-AKT signaling pathway mediated by a long non-coding RNA, LINC00672. Modulating the pathway could shorten the conversion time to 14 days. Conclusion: The discovered FBs-KLCs conversion in the study might open a new avenue to the scalable production of cell sources needed for regenerating skins and healing large-area wounds.
Collapse
|
9
|
From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns 2019; 45:16-31. [DOI: 10.1016/j.burns.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
10
|
Gupta K, Mehrotra M, Kumar P, Gogia AR, Prasad A, Fisher JA. Smoke Inhalation Injury: Etiopathogenesis, Diagnosis, and Management. Indian J Crit Care Med 2018; 22:180-188. [PMID: 29657376 PMCID: PMC5879861 DOI: 10.4103/ijccm.ijccm_460_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Smoke inhalation injury is a major determinant of morbidity and mortality in fire victims. It is a complex multifaceted injury affecting initially the airway; however, in short time, it can become a complex life-threatening systemic disease affecting every organ in the body. In this review, we provide a summary of the underlying pathophysiology of organ dysfunction and provide an up-to-date survey of the various critical care modalities that have been found beneficial in caring for these patients. Major pathophysiological change is development of edema in the respiratory tract. The tracheobronchial tree is injured by steam and toxic chemicals, leading to bronchoconstriction. Lung parenchyma is damaged by the release of proteolytic elastases, leading to release of inflammatory mediators, increase in transvascular flux of fluids, and development of pulmonary edema and atelectasis. Decreased levels of surfactant and immunomodulators such as interleukins and tumor-necrosis-factor-α accentuate the injury. A primary survey is conducted at the site of fire, to ensure adequate airway, breathing, and circulation. A good intravenous access is obtained for the administration of resuscitation fluids. Early intubation, preferably with fiberoptic bronchoscope, is prudent before development of airway edema. Bronchial hygiene is maintained, which involves therapeutic coughing, chest physiotherapy, deep breathing exercises, and early ambulation. Pharmacological agents such as beta-2 agonists, racemic epinephrine, N-acetyl cysteine, and aerosolized heparin are used for improving oxygenation of lungs. Newer agents being tested are perfluorohexane, porcine pulmonary surfactant, and ClearMate. Early diagnosis and treatment of smoke inhalation injury are the keys for better outcome.
Collapse
Affiliation(s)
- Kapil Gupta
- Department of Anaesthesia, Vardhaman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mayank Mehrotra
- Department of Anesthesia, Integral Institute of Medical Sciences, Lucknow, India
| | - Parul Kumar
- Department of Emergency Medicine, Sinai Health Systems, Chicago, USA
| | - Anoop Raj Gogia
- Department of Anaesthesia, Vardhaman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Arun Prasad
- Department of Anaesthesia, University Health Network, and University of Toronto, Toronto, Canada
| | - Joseph Arnold Fisher
- Department of Anaesthesia, University Health Network, and University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Role of microRNAs in sepsis. Inflamm Res 2017; 66:553-569. [DOI: 10.1007/s00011-017-1031-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
|
12
|
Enkhbaatar P, Pruitt BA, Suman O, Mlcak R, Wolf SE, Sakurai H, Herndon DN. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet 2016; 388:1437-1446. [PMID: 27707500 PMCID: PMC5241273 DOI: 10.1016/s0140-6736(16)31458-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Smoke inhalation injury is a serious medical problem that increases morbidity and mortality after severe burns. However, relatively little attention has been paid to this devastating condition, and the bulk of research is limited to preclinical basic science studies. Moreover, no worldwide consensus criteria exist for its diagnosis, severity grading, and prognosis. Therapeutic approaches are highly variable depending on the country and burn centre or hospital. In this Series paper, we discuss understanding of the pathophysiology of smoke inhalation injury, the best evidence-based treatments, and challenges and future directions in diagnostics and management.
Collapse
Affiliation(s)
- Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Basil A Pruitt
- Department of Surgery, Division of Trauma, University of Texas Health Science Center, San Antonio, TX, USA
| | - Oscar Suman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Ronald Mlcak
- Shriners Hospitals for Children, Galveston, TX, USA; Department of Respiratory Care, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|