1
|
Lashgari NA, Roudsari NM, Shamsnia HS, Shayan M, Momtaz S, Abdolghaffari AH. TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of schizophrenia. Can J Physiol Pharmacol 2024; 102:150-160. [PMID: 37955633 DOI: 10.1139/cjpp-2023-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, The Academic Center for Education, Culture and Research (ACECR), Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Garcia BREV, Makiyama EN, Sampaio GR, Soares-Freitas RAM, Bonvini A, Amaral AG, Bordin S, Fock RA, Rogero MM. Effects of Branched-Chain Amino Acids on the Inflammatory Response Induced by LPS in Caco-2 Cells. Metabolites 2024; 14:76. [PMID: 38276311 PMCID: PMC10821323 DOI: 10.3390/metabo14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Branched-chain amino acids (BCAA) are essential for maintaining intestinal mucosal integrity. However, only a few studies have explored the role of BCAA in the modulation of intestinal inflammation. In this study, we investigated in vitro effects of BCAA on the inflammatory response induced by lipopolysaccharide (LPS) (1 µg/mL) in Caco-2 cells. Caco-2 cells were assigned to six groups: control without BCAA (CTL0), normal BCAA (CTL; 0.8 mM leucine, 0.8 mM isoleucine, and 0.8 mM valine); leucine (LEU; 2 mM leucine), isoleucine (ISO; 2 mM isoleucine), valine (VAL; 2 mM valine), and high BCAA (LIV; 2 mM leucine, 2 mM isoleucine, and 2 mM valine). BCAA was added to the culture medium 24 h before LPS stimulation. Our results indicated that BCAA supplementation did not impair cell viability. The amino acids leucine and isoleucine attenuated the synthesis of IL-8 and JNK and NF-kB phosphorylation induced by LPS. Furthermore, neither BCAA supplementation nor LPS treatment modulated the activity of glutathione peroxidase or the intracellular reduced glutathione/oxidized glutathione ratio. Therefore, leucine and isoleucine exert anti-inflammatory effects in Caco-2 cells exposed to LPS by modulating JNK and NF-kB phosphorylation and IL-8 production. Further in vivo studies are required to validate these findings and gather valuable information for potential therapeutic or dietary interventions.
Collapse
Affiliation(s)
- Bruna Ruschel Ewald Vega Garcia
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (E.N.M.); (R.A.F.)
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
| | | | - Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil;
| | - Andressa Godoy Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (A.G.A.); (S.B.)
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (A.G.A.); (S.B.)
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (E.N.M.); (R.A.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (B.R.E.V.G.); (G.R.S.); (R.A.M.S.-F.)
- Food Research Center (FoRC), CEPID-FAPESP (Research Innovation and Dissemination Centers São Paulo Research Foundation), São Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Lashgari NA, Roudsari NM, Shayan M, Eshraghi S, Momtaz S, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Spinal Muscular Atrophy Treatment: The MTOR Regulatory Intervention. Curr Med Chem 2024; 31:1512-1522. [PMID: 36788689 DOI: 10.2174/0929867330666230213114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 02/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a hereditary disorder affecting neurons and muscles, resulting in muscle weakness and atrophy. Most SMA cases are diagnosed during infancy or early childhood, the most common inherited cause of infant mortality without treatment. Still, SMA might appear at older ages with milder symptoms. SMA patients demonstrate progressive muscle waste, movement problems, tremors, dysphagia, bone and joint deformations, and breathing difficulties. The mammalian target of rapamycin (mTOR), the mechanistic target of rapamycin, is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases encoded by the mTOR gene in humans. The mTOR phosphorylation, deregulation, and autophagy have shown dissimilarity amongst SMA cell types. Therefore, exploring the underlying molecular process in SMA therapy could provide novel insights and pave the way for finding new treatment options. This paper provides new insight into the possible modulatory effect of mTOR/ autophagy in SMA management.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Eshraghi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Tseng CH. Rosiglitazone Does Not Affect the Risk of Inflammatory Bowel Disease: A Retrospective Cohort Study in Taiwanese Type 2 Diabetes Patients. Pharmaceuticals (Basel) 2023; 16:ph16050679. [PMID: 37242462 DOI: 10.3390/ph16050679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Human studies on the effect of rosiglitazone on inflammatory bowel disease (IBD) are still lacking. We investigated whether rosiglitazone might affect IBD risk by using the reimbursement database of Taiwan's National Health Insurance to enroll a propensity-score-matched cohort of ever users and never users of rosiglitazone. The patients should have been newly diagnosed with diabetes mellitus between 1999 and 2006 and should have been alive on 1 January 2007. We then started to follow the patients from 1 January 2007 until 31 December 2011 for a new diagnosis of IBD. Propensity-score-weighted hazard ratios were estimated with regards to rosiglitazone exposure in terms of ever users versus never users and in terms of cumulative duration and cumulative dose of rosiglitazone therapy for dose-response analyses. The joint effects and interactions between rosiglitazone and risk factors of psoriasis/arthropathies, dorsopathies, and chronic obstructive pulmonary disease/tobacco abuse and the use of metformin were estimated by Cox regression after adjustment for all covariates. A total of 6226 ever users and 6226 never users were identified and the respective numbers of incident IBD were 95 and 111. When we compared the risk of IBD in ever users to that of the never users, the estimated hazard ratio (0.870, 95% confidence interval: 0.661-1.144) was not statistically significant. When cumulative duration and cumulative dose of rosiglitazone therapy were categorized by tertiles and hazard ratios were estimated by comparing the tertiles of rosiglitazone exposure to the never users, none of the hazard ratios reached statistical significance. In secondary analyses, rosiglitazone has a null association with Crohn's disease, but a potential benefit on ulcerative colitis (UC) could not be excluded. However, because of the low incidence of UC, we were not able to perform detailed dose-response analyses for UC. In the joint effect analyses, only the subgroup of psoriasis/arthropathies (-)/rosiglitazone (-) showed a significantly lower risk in comparison to the subgroup of psoriasis/arthropathies (+)/rosiglitazone (-). No interactions between rosiglitazone and the major risk factors or metformin use were observed. We concluded that rosiglitazone has a null effect on the risk of IBD, but the potential benefit on UC awaits further investigation.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan 35053, Taiwan
| |
Collapse
|
5
|
Lashgari NA, Roudsari NM, Shayan M, Niazi Shahraki F, Hosseini Y, Momtaz S, Abdolghaffari AH. IDO/Kynurenine; novel insight for treatment of inflammatory diseases. Cytokine 2023; 166:156206. [PMID: 37120946 DOI: 10.1016/j.cyto.2023.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1β, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Lashgari NA, Roudsari NM, Zadeh SST, Momtaz S, Abbasifard M, Reiner Ž, Abdolghaffari AH, Sahebkar A. Statins block mammalian target of rapamycin pathway: a possible novel therapeutic strategy for inflammatory, malignant and neurodegenerative diseases. Inflammopharmacology 2023; 31:57-75. [PMID: 36574095 PMCID: PMC9792946 DOI: 10.1007/s10787-022-01077-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 12/28/2022]
Abstract
Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google Scholar, Scopus, and Cochrane libraries.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.
- Toxicology and Diseases Group (TDG), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|