1
|
Fitzpatrick M, Szalanczy A, Beeson A, Vora A, Scott C, Grzybowski M, Klotz J, Der N, Chen R, Geurts AM, Woods LCS. Protein-coding mutation in Adcy3 increases adiposity and alters emotional behaviors sex-dependently in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.598846. [PMID: 38916175 PMCID: PMC11195162 DOI: 10.1101/2024.06.16.598846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Objective Adenylate cyclase 3 (Adcy3) has been linked to both obesity and major depressive disorder (MDD). Our lab identified a protein-coding variant in the 2nd transmembrane (TM) helix of Adcy3 in rats, and similar obesity variants have been identified in humans. The current study investigates the role of a TM variant in adiposity and behavior. Methods We used CRISPR-SpCas9 to mutate the TM domain of Adcy3 in WKY rats (Adcy3mut/mut). We also created a heterozygous knockout rat in the same strain (Adcy3+/-). Wild-type (WT), Adcy3+/-, and Adcy3mut/mut rats were fed a high-fat diet for 12 weeks. We measured body weight, fat mass, glucose tolerance, food intake, metabolism, emotion-like behaviors, and memory. Results Adcy3+/- and Adcy3mut/mut rats weighed more than WT rats due to increased fat mass. There were key sex differences: adiposity was driven by increased food intake in males but by decreased energy expenditure in females. Adcy3mut/mut males displayed increased passive coping and decreased memory while Adcy3mut/mut females displayed increased anxiety-like behavior. Conclusions These studies show that the ADCY3 TM domain plays a role in protein function, that Adcy3 may contribute to the relationship between obesity and MDD, and that sex influences the relationships between Adcy3, metabolism, and behavior.
Collapse
Affiliation(s)
- Mackenzie Fitzpatrick
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Alexandria Szalanczy
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Angela Beeson
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Anusha Vora
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Christina Scott
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Nataley Der
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Rong Chen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| |
Collapse
|
2
|
Lin M, Gong J, Wu L, Lin X, Zhang Y, Lin W, Huang H, Zhu C. ADCY3: the pivotal gene in classical ketogenic diet for the treatment of epilepsy. Front Cell Neurosci 2024; 18:1305867. [PMID: 38841200 PMCID: PMC11150708 DOI: 10.3389/fncel.2024.1305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Epilepsy is a common neurological disorder characterized by recurrent epilepsy episodes. As a non-pharmacological treatment, the ketogenic diet has been widely applied in treating epilepsy. However, the exact therapeutic mechanism of the ketogenic diet for epilepsy remains unclear. This study investigates the molecular mechanisms of the ketogenic diet in regulating fatty acid metabolism and activating the ADCY3-initiated cAMP signaling pathway to enhance neuronal inhibition and thereby treat epilepsy. Methods and results Meta-analysis reveals that the ketogenic diet is superior to the conventional diet in treating epilepsy. Animal experiments demonstrate that the ketogenic diet is more effective than the conventional diet in treating epilepsy, with the best results achieved using the classic ketogenic diet. Transcriptome sequencing analysis identifies six essential genes, among which ADCY3 shows increased expression in the ketogenic diet. In vivo experiments confirm that the activation of the cAMP-PKA signaling pathway by ADCY3 enhances neuronal inhibition and improves epilepsy control. Conclusion Clinical observations indicate that the ketogenic diet improves patient epilepsy episodes by regulating the ADCY3-initiated cAMP signaling pathway.
Collapse
Affiliation(s)
- Mingxing Lin
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiayin Gong
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Wojtas MN, Diaz-González M, Stavtseva N, Shoam Y, Verma P, Buberman A, Izhak I, Geva A, Basch R, Ouro A, Perez-Benitez L, Levy U, Borcel E, Nuñez Á, Venero C, Rotem-Dai N, Veksler-Lublinsky I, Knafo S. Interplay between hippocampal TACR3 and systemic testosterone in regulating anxiety-associated synaptic plasticity. Mol Psychiatry 2024; 29:686-703. [PMID: 38135756 PMCID: PMC11153148 DOI: 10.1038/s41380-023-02361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.
Collapse
Affiliation(s)
- Magdalena Natalia Wojtas
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Marta Diaz-González
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadezhda Stavtseva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuval Shoam
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Poonam Verma
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Buberman
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Inbar Izhak
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aria Geva
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Basch
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alberto Ouro
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Perez-Benitez
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain
| | - Uri Levy
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erika Borcel
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Ángel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Cesar Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Noa Rotem-Dai
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shira Knafo
- Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Instituto Biofisika (UPV/EHU, CSIC), Departamento Biología Celular e Histología Facultad de Medicina y Enfermería, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
4
|
Fitzpatrick M, Solberg Woods LC. Adenylate cyclase 3: a potential genetic link between obesity and major depressive disorder. Physiol Genomics 2024; 56:1-8. [PMID: 37955134 PMCID: PMC11281808 DOI: 10.1152/physiolgenomics.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Obesity and major depressive disorder (MDD) are both significant health issues that have been increasing in prevalence and are associated with multiple comorbidities. Obesity and MDD have been shown to be bidirectionally associated, and they are both influenced by genetics and environmental factors. However, the molecular mechanisms that link these two diseases are not yet fully understood. It is possible that these diseases are connected through the actions of the cAMP/protein kinase A (PKA) pathway. Within this pathway, adenylate cyclase 3 (Adcy3) has emerged as a key player in both obesity and MDD. Numerous genetic variants in Adcy3 have been identified in humans in association with obesity. Rodent knockout studies have also validated the importance of this gene for energy homeostasis. Furthermore, Adcy3 has been identified as a top candidate gene and even a potential blood biomarker for MDD. Adcy3 and the cAMP/PKA pathway may therefore serve as an important genetic and functional link between these two diseases. In this mini-review, we discuss the role of both Adcy3 and the cAMP/PKA pathway, including specific genetic mutations, in both diseases. Understanding the role that Adcy3 mutations play in obesity and MDD could open the door for precision medicine approaches and treatments for both diseases that target this gene.
Collapse
Affiliation(s)
- Mackenzie Fitzpatrick
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
5
|
Schappi JM, Rasenick MM. Gα s, adenylyl cyclase, and their relationship to the diagnosis and treatment of depression. Front Pharmacol 2022; 13:1012778. [PMID: 36467104 PMCID: PMC9716287 DOI: 10.3389/fphar.2022.1012778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
The relationship between depression, its etiology and therapy, and the cAMP signaling system have been studies for decades. This review will focus on cAMP, G proteins and adenylyl cyclase and depression or antidepressant action. Both human and animal studies are compared and contrasted. It is concluded that there is some synteny in the findings that cAMP signaling is attenuated in depression and that this is reversed by successful antidepressant therapy. The G protein that activates adenylyl cyclase, Gαs, appears to have diminished access to adenylyl cyclase in depression, and this is rectified by successful antidepressant treatment. Unfortunately, attempts to link specific isoforms of adenylyl cyclase to depression or antidepressant action suffer from discontinuity between human and animal studies.
Collapse
Affiliation(s)
- Jeffrey M. Schappi
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| | - Mark M. Rasenick
- Departments of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States,Jesse Brown VAMC, Chicago, IL, United States,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States,Pax Neuroscience, Glenview, IL, United States,*Correspondence: Mark M. Rasenick, ; Jeffrey M. Schappi,
| |
Collapse
|
6
|
Ren XH, Wang XX, He LP. Sodium selenite may be not the optimal speciation as an effective therapy for arsenic-induced anxiety-/depression-like behavior. World J Psychiatry 2022; 12:1255-1257. [PMID: 36186509 PMCID: PMC9521533 DOI: 10.5498/wjp.v12.i9.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
Major depressive disorder is a serious and prevalent neuropsychiatric disorder, affecting more than 350 million people worldwide. Here, sodium selenite (SS) was selected as the selenite supplement to improve the behavior in a mouse model of depression induced by As. SS may be not the optimal speciation for selenite supplementation and the source of the SS used in the study was not disclosed. There are many mouse models of depression and anxiety; however, in the current study, a classical mouse model of depression was not used. Thus, several questions still need to be further discussed. Taken together, the results indicate that SS may be not the optimal speciation as an effective therapy for As-induced anxiety-/depression-like behavior.
Collapse
Affiliation(s)
- Xiao-Hua Ren
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Xiao-Xuan Wang
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
7
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
8
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
9
|
Zhang WW, Cao H, Li Y, Fu XJ, Zhang YQ. Peripheral ablation of type Ⅲ adenylyl cyclase induces hyperalgesia and eliminates KOR-mediated analgesia in mice. JCI Insight 2021; 7:153191. [PMID: 34914639 PMCID: PMC8855833 DOI: 10.1172/jci.insight.153191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ca2+/calmodulin-stimulated group Ⅰ adenylyl cyclase (AC) isoforms AC1 and AC8 have been involved in nociceptive processing and morphine responses. However, whether AC3, another member of group I ACs, is involved in nociceptive transmission and regulates opioid receptor signaling remain elusive. Here we report that conditional knockout of AC3 (AC3CKO) in L3 and L4 DRGs robustly facilitates the mouse nociceptive responses, decreases voltage-gated potassium (Kv) channel currents and increases neuronal excitability. Also, AC3CKO eliminates the analgesic effect of κ opioid receptor (KOR) agonist and its inhibition on Kv channel by classical Gαi/o signaling or nonclassical direct interaction of KOR and AC3 proteins. Interestingly, significantly upregulated AC1 level and cAMP concentration are detected in AC3 deficient DRGs. Inhibition of AC1 completely reversed cAMP upregulation, neuronal excitability enhancement and nociceptive behavioral hypersensitivity in AC3CKO mice. Our findings suggest a crucial role of peripheral AC3 in nociceptive modulation and KOR opioid analgesia.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Hong Cao
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Yang Li
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xian-Jun Fu
- Qingdao Academy of Chinese Medical Science, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Yu-Qiu Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| |
Collapse
|