1
|
Kloc R, Urbanska EM. Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex. Cells 2024; 13:1424. [PMID: 39272996 PMCID: PMC11394628 DOI: 10.3390/cells13171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs' proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios.
Collapse
Affiliation(s)
| | - Ewa M. Urbanska
- Chair and Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
2
|
Mocci I, Casu MA, Sogos V, Liscia A, Angius R, Cadeddu F, Fanti M, Muroni P, Talani G, Diana A, Collu M, Setzu MD. Effects of memantine on mania-like phenotypes exhibited by Drosophila Shaker mutants. CNS Neurosci Ther 2023. [PMID: 36942502 DOI: 10.1111/cns.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.
Collapse
Affiliation(s)
- Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Maria Antonietta Casu
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rossella Angius
- Unit of Biomedical Research Support, NMR Laboratory and Bioanalytical Technologies, Sardegna Ricerche, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Francesca Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
3
|
Montemitro C, Angebrandt A, Wang TY, Pettorruso M, Abulseoud OA. Mechanistic insights into the efficacy of memantine in treating certain drug addictions. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110409. [PMID: 34324921 DOI: 10.1016/j.pnpbp.2021.110409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 01/11/2023]
Abstract
The deleterious effects of the drug addiction epidemic are compounded by treatment strategies that are only marginally efficacious. Memantine is a unique glutamatergic medication with proven ability to attenuate drug addiction in preclinical models. However, clinical translational studies are inconsistent. In this review, we summarize preclinical evidences and clinical trials that investigated the efficacy of memantine in treating patients with alcohol, opiate, cocaine, and nicotine use disorders and discuss the results from a mechanistic point of view. Memantine has shown efficacy in reducing alcohol and opiate craving, consumption, and withdrawal severity. However, in cocaine and nicotine use disorders, memantine did not have significant effect on cravings or consumption. Additionally, memantine was associated with increased subjective effects of alcohol, cocaine, and nicotine. We discuss possible mechanisms behind this variability. Since memantine transiently blocks NMDA receptors and protects neurons from overstimulation by excessive synaptic glutamate, its efficacy should be observed in drug phases that cause hyperglutamatergic states, while hypoglutamatergic drug use states would not resolve with blocking NMDA receptors. Second, memantine pharmacokinetic studies have been done in rodents and healthy volunteers, but not in patients with substance use disorder. Memantine, opiates, cocaine, and nicotine share the same transporter family at the blood brain barrier. This shared transport mechanism could impact brain concentrations of memantine and its effects. In conclusion, memantine remains an intriguing compound in our pharmacopeia with controversial results in treating certain aspects of drug addiction. Further studies are needed to understand the clinical and biological correlates of its efficacy.
Collapse
Affiliation(s)
- Chiara Montemitro
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Neuroscience & Imaging, Università degli Studi G. d'Annunzio Chieti e Pescara, Italy.
| | - Alexandra Angebrandt
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Tzu-Yun Wang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mauro Pettorruso
- Department of Neuroscience & Imaging, Università degli Studi G. d'Annunzio Chieti e Pescara, Italy
| | - Osama A Abulseoud
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA; Department of Psychiatry and Psychology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Carta MG, Kalcev G, Fornaro M, Nardi AE. Novel experimental and early investigational drugs for the treatment of bipolar disorder. Expert Opin Investig Drugs 2021; 30:1081-1087. [PMID: 34844484 DOI: 10.1080/13543784.2021.2000965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The quest toward more effective treatments for bipolar disorder (BD) solicits novel drugs and further research on the underpinning neurobiology. The present review aims to critically appraise the existing evidence about the pharmacological treatment of BD toward the development of novel treatment avenues. AREAS COVERED The present review appraises animal and human studies concerning both the currently available psychotropic drugs, and the general medicine drugs which may represent a path toward the development of novel drugs for BD. PubMed and Scopus were last accessed on February 20th, 2021 for records indexed upon inception relevant to the pharmacological treatment of BD. Immune-modulating agents, anti-inflammatory agents, and glutamate antagonists represent the most intriguing potential targets for the development of new drugs for BD, thus receiving critical appraisal in the present text. EXPERT OPINION Regardless of the neurobiological pathways worthy of investigation toward the development of experimental drugs for BD, several unmet needs need to be addressed first. In particular, several biomarkers are altered in BD. However, it is the opinion herein expressed by the authors that it remains uncertain what comes first, that is peripheral changes or the disease.
Collapse
Affiliation(s)
- Mauro Giovanni Carta
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari Italy
| | - Goce Kalcev
- Department of Mechanical, Chemical and Materials Engineering, International Ph.D. In Innovation Sciences and Technologies, University of Cagliari, Cagliari Italy
| | - Michele Fornaro
- Department of Psychiatry, University of Federico II of Naples, Italy
| | - Antonio Egidio Nardi
- Laboratory Panic and Respiration, Institute of Psychiatry (Ipub), Federal University of Rio De Janeiro (Ufrj), Rio De Janeiro, Brazil
| |
Collapse
|
5
|
Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol 2021; 910:174455. [PMID: 34461125 DOI: 10.1016/j.ejphar.2021.174455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that was initially indicated for the treatment of moderate to severe Alzheimer's disease. It is now also considered for a variety of other pathologies in which activation of NMDA receptors apparently contributes to the pathogenesis and progression of disease. In addition to the central nervous system (CNS), NMDA receptors can be found in non-neuronal cells and tissues that recently have become an interesting research focus. Some studies have shown that glutamate signaling plays a role in cell transformation and cancer progression. In addition, these receptors may play a role in cardiovascular disorders. In this review, we focus on the most recent findings for memantine with respect to its pharmacological effects in a range of diseases, including inflammatory disorders, cardiovascular diseases, cancer, neuropathy, as well as retinopathy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hamid Soraya
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Marinescu I, Marinescu D, Mogoantă L, Efrem IC, Stovicek PO. SARS-CoV-2 infection in patients with serious mental illness and possible benefits of prophylaxis with Memantine and Amantadine. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:1007-1022. [PMID: 34171050 PMCID: PMC8343601 DOI: 10.47162/rjme.61.4.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with serious mental illness are a high-risk category of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with schizophrenia are not participatory and have increased mortality and morbidity, patients with dementia cannot be cared for while depression, anxiety, bipolar tubing are associated with low immune status. Social stress is amplified by social isolation, amplifying depression and the mechanisms of decreased immunity. Hygiene measures and prophylactic behavior are impossible to put into practice in conditions of chronic mental illness. In coronavirus disease 2019 (COVID-19), the risk for severe development is associated with the presence of comorbidities and immune system deficiency. Prothrombotic status, cytokine storm and alveolar destruction are mechanisms that aggravate the evolution of patients, especially in the context in which they have dysfunction of the autonomic system. The activity of proinflammatory cytokines is accentuated by hyperglutamatergia, which potentiates oxidative stress and triggers the mechanisms of neural apoptosis by stimulating microglial activation. Activation of M1-type microglia has an important role in pathogenesis of major psychiatric disorders, such as major depression, schizophrenia or bipolar disorder, and may associate hippocampal atrophy and disconnection of cognitive structures. Memantine and Amantadine, N-methyl-D-aspartate (NMDA) glutamate receptor inhibitors, have demonstrated, through their pharmacological profile, psychotropic effects but also antiviral properties. In the conditions of the COVID-19 pandemic, based on these arguments, we suggest that they can be associated with the therapy with the basic psychotropics, Memantine or Amantadine, for the control of neuropsychiatric symptoms but also as adjuvants with antiviral action.
Collapse
Affiliation(s)
- Ileana Marinescu
- Doctoral School, Department of Internal Medicine, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, Romania; ,
| | | | | | | | | |
Collapse
|
7
|
de Souza Pessôa G, de Jesus JR, Balbuena TS, Arruda MAZ. Metallomics-based platforms for comparing the human blood serum profiles between bipolar disorder and schizophrenia patients. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8698. [PMID: 31837042 DOI: 10.1002/rcm.8698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE An evaluation of bipolar disorder (BD) and schizophrenia (SCZ) was carried out, from a metallomics point of view, using native conditions, attempting to preserve the interaction between metals and biomolecules. METHOD For this task, blood serum samples from healthy individuals and patients were compared. In addition, the profiles of metal ions and metalloids involved in the pathologies were quantified, and a comparison was carried out of the protein profile in serum samples of healthy individuals and diseased patients. RESULTS After optimization and accuracy evaluation of the method, different concentrations of Li, Mg, Mn and Zn were observed in the samples of BD patients and high levels of copper for SCZ patients, indicating an imbalance in the homeostasis of important micronutrients. The treatment, especially with lithium, may be related to competition between metallic ions. BD-related metallobiomolecules were detected, preserving the binding between metal ions and biomolecules, with four fractions detected in the ultraviolet range (280 nm). Four fractions were collected by high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and the proteins were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Ig lambda chain V-IV region Hil, immunoglobulin heavy constant gama 1 (IGHG1) and beta-2-glycoprotein 1 (or ApoH) was identified in SCZ samples, suggesting its relationship with mood disorders. Surprisingly, Protein IGKV2D-28 was identified only in BD samples, opening up new possibilities for studies regarding the role of this protein in BD. CONCLUSIONS This approach brings new perspectives to the comprehension of mood disorders, highlighting the importance of metallomics science in disease development. This strategy showed an innovative potential for evaluating mood disorders at the proteomic level, making it possible to identify proteins related to mood disorders and BD.
Collapse
Affiliation(s)
- Gustavo de Souza Pessôa
- Group of Spectrometry, Sample Preparation and Mechanization (GEPAM), Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, 13084-862, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, UNICAMP, 13084-862, Campinas, SP, Brazil
| | - Jemmyson Romário de Jesus
- Group of Spectrometry, Sample Preparation and Mechanization (GEPAM), Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, 13084-862, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, UNICAMP, 13084-862, Campinas, SP, Brazil
| | - Tiago Santana Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Marco Aurélio Zezzi Arruda
- Group of Spectrometry, Sample Preparation and Mechanization (GEPAM), Institute of Chemistry, University of Campinas, UNICAMP, PO Box 6154, 13084-862, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas, UNICAMP, 13084-862, Campinas, SP, Brazil
| |
Collapse
|
8
|
Kawai H, Takaki M, Sakamoto S, Shibata T, Tsuchida A, Yoshimura B, Yada Y, Matsumoto N, Sato K, Abe K, Okahisa Y, Kishi Y, Takao S, Tsutsui K, Kanbayashi T, Tanaka K, Yamada N. Anti-NMDA-receptor antibody in initial diagnosis of mood disorder. Eur Neuropsychopharmacol 2019; 29:1041-1050. [PMID: 31358437 DOI: 10.1016/j.euroneuro.2019.07.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/15/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Anti-NMDAR encephalitis is increasingly recognized as one etiology of psychiatric symptoms, but there is not enough evidence on patients with mood disorder. We assayed anti-NR1/NR2B IgG antibodies in serum and/or cerebrospinal fluid of 62 patients initially diagnosed with mood disorder by a cell-based assay. We also investigated the specific patient characteristics and psychotic symptoms. At first admission, the patients showed only psychiatric symptoms without typical neurological signs or abnormal examination findings. Four of the 62 patients had anti-NR1/NR2B IgG antibodies. The anti-NR1/NR2B IgG antibody-positive patients showed more super- or abnormal sensitivity (P = 0.00088), catatonia (P = 0.049), and more conceptual disorganization (P < 0.0001), hostility (P = 0.0010), suspiciousness (P < 0.0001), and less emotional withdrawal (P < 0.0001) and motor retardation (P < 0.0001) on the Brief Psychiatric Rating Scale than the antibody-negative patients. During the clinical course, anti-NR1/NR2B IgG antibody-positive patients showed more catatonia (P = 0.0042) and met Graus's criteria for diagnosis of anti-NMDAR encephalitis, but negative patients did not. Immunotherapy was effective for anti-NR1/NR2B IgG antibody-positive patients, and there was the weak relationship (R² = 0.318) between the anti-NR1/NR2B IgG antibody titer in the cerebrospinal fluid and the Brief Psychiatric Rating Scale score.
Collapse
Affiliation(s)
- Hiroki Kawai
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Manabu Takaki
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Shinji Sakamoto
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Ayaka Tsuchida
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Bunta Yoshimura
- Department of Psychiatry, Okayama Psychiatric Medical Center, Japan
| | - Yuji Yada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of Psychiatry, Okayama Psychiatric Medical Center, Japan
| | - Namiko Matsumoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Kota Sato
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yuko Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshiki Kishi
- Department of Psychiatry, Okayama Psychiatric Medical Center, Japan
| | - Soshi Takao
- Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Ko Tsutsui
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Japan
| | - Takashi Kanbayashi
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan
| | - Keiko Tanaka
- Brain Research Institute, Niigata University Graduate School of Medicine, Japan
| | - Norihito Yamada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Omranifard V, Tarrahi MJ, Sharifi S, Karahmadi M. Evaluation of the Effect of Memantine Supplementation in the Treatment of Acute Phase of Mania in Bipolar Disorder of Elderly Patients: A Double-blind Randomized Controlled Trial. Adv Biomed Res 2018; 7:148. [PMID: 30596058 PMCID: PMC6282487 DOI: 10.4103/abr.abr_110_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: This study aimed to evaluate the efficacy of memantine in the acute treatment of geriatric with bipolar disorder (BD) hospitalized for mania. Materials and Methods: This study conducted on 70 patients older than 60 years with BD in the acute phase of mania. Oral sodium valproate was prescribed in both groups. The intervention group received memantine tablet and the placebo group received a placebo tablet based on a same procedure. Severity of mania, cognitive changes, and quality of life (QoL) were assessed and recorded 4 and 8 weeks after the beginning of the study. The collected data were analyzed with SPSS (version 20) using independent samples t-test, analysis of variance in repeated observations, Chi-squared test, and Fisher's exact test. Results: Mania severity score had no significant difference at the beginning of the study, but 4 and 8 weeks after the intervention, it was reduced significantly in both groups (P < 0.001) that was higher in memantine group (P = 0.038). The mean increase in score of cognitive variations was 6.74 in the memantine group and 3.62 in the placebo group with a nonsignificant difference (P = 0.125). The scores of each dimension of QoL in the two groups showed that in all four dimensions, the patient's physical, psychological, social, and environmental status increased significantly by time (P < 0.001). Conclusions: According to the results of this study, memantine as an adjuvant to administration of sodium valproate may have a significant effect on decreasing the intensity of mania in the long run.
Collapse
Affiliation(s)
- Victoria Omranifard
- Department of Psychiatry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Biostatistics and Epidemiology, Faculty of Health, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shima Sharifi
- Department of Psychiatry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Karahmadi
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Noor Hospital, Isfahan, Iran
| |
Collapse
|
10
|
Huang XT, Yue SJ, Li C, Guo J, Huang YH, Han JZ, Feng DD, Luo ZQ. Antenatal blockade of N-methyl-D-aspartate receptors by Memantine reduces the susceptibility to diabetes induced by a high-fat diet in rats with intrauterine growth restriction. Biol Reprod 2018; 96:960-970. [PMID: 28486599 DOI: 10.1095/biolreprod.116.145011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
Intrauterine growth retardation (IUGR) is closely related to the later development of type 2 diabetes in adulthood. Excessive activation of N-methly-D-aspartate receptors (NMDARs) causes excitatory neurotoxicity, resulting in neuronal injury or death. Inhibition of NMDARs enhances the glucose-stimulated insulin secretion and survival of islet cells in type 2 diabetic mouse and human islets. Here, we examined whether antenatal blockade of NMDARs by Memantine could decrease the risk of diabetes induced by a high-fat (HF) diet at adulthood in IUGR rats. Pregnant SD rats were assigned to four groups: control, IUGR, Memantine, and Memantine + IUGR. The pregnant rats were exposed to hypoxic conditions (FiO2 = 0.105) for 8 h/day (IUGR group) or given a daily Memantine injection (5 mg/kg, i.p.) before hypoxia exposure from embryonic day (E) 14.5 to E 20.5 (Memantine + IUGR). The offspring were fed an HF diet with 60% of the calories from age 4 to 12 weeks. We found that NMDAR mRNAs were expressed in the fetal rat pancreas. An HF diet resulted in a high rate of diabetes at adulthood in the IUGR group. Antenatal Memantine treatment decreased the risk of diabetes at adulthood of rats with IUGR, which was associated with rescued glucose tolerance, increased insulin release, improved the insulin sensitivity, and increased expression of genes related to beta-cell function in the pancreas. Together, our results suggest that antenatal blockade of NMDARs by Memantine in pregnant rats improves fetal development and reduces the susceptibility to diabetes at adulthood in offspring.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Jia Guo
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yan-Hong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Zhong Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dan-Dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
12
|
Duan J, Lao C, Chen J, Pan F, Zhang C, Xu W, Zhou W, Hu J, Shang D, Huang M, Xu Y. Memantine induces manic episode in a 73-year-old patient with vascular neurocognitive disorder: a case report. Neuropsychiatr Dis Treat 2018; 14:1395-1398. [PMID: 29881276 PMCID: PMC5985765 DOI: 10.2147/ndt.s160832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Memantine, an N-methyl-d-aspartate receptor antagonist, is a well-established treatment option for moderate-to-severe cognitive impairment related to Alzheimer disease. Recently, growing evidence has indicated memantine might also be effective in treatment of affective disorders. The common drug-induced adverse events of memantine include confusion, dizziness, drowsiness, headache, insomnia, and agitation. Herein, we presented a case of a 73-year-old female patient with vascular neurocognitive disorder, who developed a manic episode after taking memantine.
Collapse
Affiliation(s)
- Jinfeng Duan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Chengming Lao
- College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Yiwu Mental Health Center, Yiwu, People's Republic of China
| | - Jingkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Chenlin Zhang
- College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weijuan Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Weihua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Jianbo Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Desheng Shang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Regulation of Human Brain Microvascular Endothelial Cell Adhesion and Barrier Functions by Memantine. J Mol Neurosci 2017; 62:123-129. [PMID: 28429235 DOI: 10.1007/s12031-017-0917-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022]
Abstract
Vascular risk factors have been linked to cognitive decline and dementia in the elderly. Microvascular inflammation, especially of the endothelium, may contribute to the progression of neurodegenerative events in Alzheimer's disease (AD). Memantine, an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is a licensed drug used for the treatment of moderate to severe AD. However, little information is available regarding its anti-inflammatory effects on the endothelium. In this study, we investigated the effects of memantine on human brain microvascular endothelial dysfunction induced by the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Our results show that memantine prevents the attachment of monocyte THP-1 cells to human brain microvascular endothelial cells (HBMVEs). An in vitro BBB model experiment displayed that memantine could rescue TNF-α-induced disruption of the in vitro BBB model. In addition, memantine also interferes with monocyte transmigration across the BBB model. Our results indicate that TNF-α significantly increased the expression of cell adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin, which was prevented by pretreatment with memantine. Mechanistically, memantine reversed activation of the transcription factor NF-κB by preventing the phosphorylation and degradation of its inhibitor IκBα. Our data is the first to describe a novel anti-inflammatory mechanism driven by the endothelial cell-mediated neuroprotective effects of memantine.
Collapse
|
14
|
An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep 2017; 7:44120. [PMID: 28303894 PMCID: PMC5356012 DOI: 10.1038/srep44120] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/06/2017] [Indexed: 01/21/2023] Open
Abstract
In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia.
Collapse
|
15
|
Carey ET, Till SR, As-Sanie S. Pharmacological Management of Chronic Pelvic Pain in Women. Drugs 2017; 77:285-301. [DOI: 10.1007/s40265-016-0687-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
New developments in the pharmacotherapy of neuropathic chronic pelvic pain. Future Sci OA 2016; 2:FSO148. [PMID: 28116131 PMCID: PMC5242194 DOI: 10.4155/fsoa-2016-0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
Advancements in further understanding the pathophysiology of chronic pelvic pain syndromes continue to direct therapy. The mechanisms of chronic pelvic pain are often multifactorial and therefore require a multidisciplinary approach. The final treatment plan is often an accumulation of organ-specific treatment and chronic pain medications directed to the CNS and PNS. This article is a review of commonly used medications for chronic pelvic neuropathic pain disorders as well as an introduction to recent innovative developments in pain medicine.
Collapse
|
17
|
Demontis F, Serra G. Failure of memantine to “reverse” quinpirole-induced hypomotility. World J Psychiatry 2016; 6:215-220. [PMID: 27354963 PMCID: PMC4919260 DOI: 10.5498/wjp.v6.i2.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To evaluate antidepressant-like effect of memantine in a rat model.
METHODS: Male Wistar rats were treated intraperitoneally with either vehicle, memantine (10 mg/kg) or imipramine (20 mg/kg), for 3 wk. Twenty-four hour after the last treatment animals were challenged with quinpirole (0.3 mg/kg s.c.) and tested for motor activity. After 1 h habituation to the motility cages, the motor response was recorded for the following 45-min and the data were collected in 5-min time bins.
RESULTS: As expected, chronic treatment with imipramine potentiated the locomotor stimulant effect of quinpirole. On the contrary, chronic memantine administration failed to induce the behavioral supersensitivity to the dopamine agonist.
CONCLUSION: The results show that memantine, at variance with antidepressant treatments, fails to induce dopaminergic behavioral supersensitivity. This observation is consistent with the results of preclinical and clinical studies suggesting that memantine does not have an acute antidepressant action but does have an antimanic and mood-stabilizing effect.
Collapse
|
18
|
Acetylcholinesterase inhibitors and memantine in bipolar disorder: A systematic review and best evidence synthesis of the efficacy and safety for multiple disease dimensions. J Affect Disord 2016; 197:268-80. [PMID: 27010579 DOI: 10.1016/j.jad.2016.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Acetylcholinesterase inhibitors (AceI) and memantine might prove useful in bipolar disorder (BD) given their neuroprotective and pro-cognitive effects, as highlighted by several case reports. We aimed to systematically review the efficacy and safety of AceI and memantine across multiple outcome dimensions in BD. METHODS Systematic PubMed and SCOPUS search until 04/17/2015 without language restrictions. Included were randomized controlled trials (RCTs), open label studies and case series of AceI or memantine in BD patients reporting quantitative data on depression, mania, psychotic symptoms, global functioning, or cognitive performance. We summarized results using a best-evidence based synthesis. RESULTS Out of 214 hits, 12 studies (RCTs=5, other designs=7, total n=422) were included. Donepezil (studies=5; treated=102 vs. placebo=21): there was strong evidence for no effect on mania and psychotic symptoms; low evidence indicating no effect on depression. Galantamine (studies=3; treated=21 vs. controls=20) (placebo=10, healthy subjects=10): there was strong evidence for no effect on mania; moderate evidence for no effect on depression; low evidence for no effect on global functioning. Memantine (studies=4; treated=152 vs. placebo=88): there was conflicting evidence regarding efficacy for mania, depression and global functioning. LIMITATIONS Paucity of RCTs; small sample size studies; heterogeneous design, outcome and patient characteristics. CONCLUSION There is limited but converging evidence of no effect of AceI in BD, and conflicting evidence about memantine in BD. Too few studies of mostly medium/low quality and lacking sufficient numbers of patients in specific mood states, especially mania, contributed data, focusing solely on short-term/medium-term treatment, necessitating additional high-quality research to yield more definite results.
Collapse
|
19
|
Bøttger P, Glerup S, Gesslein B, Illarionova NB, Isaksen TJ, Heuck A, Clausen BH, Füchtbauer EM, Gramsbergen JB, Gunnarson E, Aperia A, Lauritzen M, Lambertsen KL, Nissen P, Lykke-Hartmann K. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep 2016; 6:22047. [PMID: 26911348 PMCID: PMC4766516 DOI: 10.1038/srep22047] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.
Collapse
Affiliation(s)
- Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,The Lundbeck Foundation Research Centre MIND, Aarhus University, Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Bodil Gesslein
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark
| | - Nina B Illarionova
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Toke J Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Bettina H Clausen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | | | - Jan B Gramsbergen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Eli Gunnarson
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Anita Aperia
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Martin Lauritzen
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark.,Glostrup Hospital, Department of Clinical Neurophysiology, DK-2600 Glostrup, Denmark
| | - Kate L Lambertsen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Yang JC, Rodriguez A, Royston A, Niu YQ, Avar M, Brill R, Simon C, Grigsby J, Hagerman RJ, Olichney JM. Memantine Improves Attentional Processes in Fragile X-Associated Tremor/Ataxia Syndrome: Electrophysiological Evidence from a Randomized Controlled Trial. Sci Rep 2016; 6:21719. [PMID: 26898832 PMCID: PMC4761982 DOI: 10.1038/srep21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 11/24/2022] Open
Abstract
Progressive cognitive deficits are common in patients with fragile X-associated tremor/ataxia syndrome (FXTAS), with no targeted treatment yet established. In this substudy of the first randomized controlled trial for FXTAS, we examined the effects of NMDA antagonist memantine on attention and working memory. Data were analyzed for patients (24 in each arm) who completed both the primary memantine trial and two EEG recordings (at baseline and follow-up) using an auditory “oddball” task. Results demonstrated significantly improved attention/working memory performance after one year only for the memantine group. The event-related potential P2 amplitude elicited by non-targets was significantly enhanced in the treated group, indicating memantine-associated improvement in attentional processes at the stimulus identification/discrimination level. P2 amplitude increase was positively correlated with improvement on the behavioral measure of attention/working memory during target detection. Analysis also revealed that memantine treatment normalized the P2 habituation effect at the follow-up visit. These findings indicate that memantine may benefit attentional processes that represent fundamental components of executive function/dysfunction, thought to comprise the core cognitive deficit in FXTAS. The results provide evidence of target engagement of memantine, as well as therapeutically relevant information that could further the development of specific cognitive or disease-modifying therapies for FXTAS.
Collapse
Affiliation(s)
- Jin-Chen Yang
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Annette Rodriguez
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Psychology, California State University, Sacramento, Sacramento, CA, 95819 USA
| | - Ashley Royston
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Psychology, University of California Davis, Davis, CA, 95616 USA
| | - Yu-Qiong Niu
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Merve Avar
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,University of Vienna, Vienna, 1010 Austria
| | - Ryan Brill
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Christa Simon
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - Jim Grigsby
- Department of Psychology, Department of Medicine, University of Colorado Denver, Denver, CO, 80217 USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA.,Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| | - John M Olichney
- Center for Mind and Brain, University of California Davis, Davis, CA, 95618 USA.,Department of Neurology, University of California Davis, School of Medicine, Sacramento, CA, 95817 USA
| |
Collapse
|
21
|
Hategan A, Bourgeois JA. Donepezil-associated manic episode with psychotic features: a case report and review of the literature. Gen Hosp Psychiatry 2016; 38:115.e1-4. [PMID: 26598289 DOI: 10.1016/j.genhosppsych.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Reports of manic episodes associated with the use of cholinesterase inhibitors (including donepezil) are limited. Despite the previous notion of procholinergic drugs potentially inducing depression, the contemporary evidence for cholinesterase inhibitors appears to also indicate a trend for elevated mood (in patients with or without a history of depressive disorder). METHOD Case report. RESULTS The authors report a case of a manic episode with psychotic features associated with the up-titration of donepezil in a patient with Alzheimer's disease and a distant history of major depression but without a preexisting bipolar disorder. CONCLUSION Pathophysiology of donepezil-induced mania appears to contradict the traditional cholinergic-adrenergic hypothesis. Donepezil-associated mania should be suspected after donepezil initiation/dose up-titration when correlated to new onset of mania. Donepezil should be used more cautiously in patients with current or previous mood episodes or in those who are otherwise at high risk for manic episodes (e.g., cerebrovascular disease). Although this requires further investigation in different patient populations, there may be subtypes of older patients with neurocognitive disorders who are particularly vulnerable to activation effects of cholinesterase inhibitors.
Collapse
Affiliation(s)
- Ana Hategan
- Department of Psychiatry and Behavioural Neurosciences, Division of Geriatric Psychiatry, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| | - James A Bourgeois
- Department of Psychiatry/Langley Porter Psychiatric Institute, Consultation/Liaison Service, University of California San Francisco Medical Center, San Francisco, CA, USA
| |
Collapse
|
22
|
Orellana AM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Cardiotonic Steroids as Modulators of Neuroinflammation. Front Endocrinol (Lausanne) 2016; 7:10. [PMID: 26909067 PMCID: PMC4754428 DOI: 10.3389/fendo.2016.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 01/13/2023] Open
Abstract
Cardiotonic steroids (CTS) are a class of specific ligands of the Na(+), K(+)- ATPase (NKA). NKA is a P-type ATPase that is ubiquitously expressed and although well known to be responsible for the maintenance of the cell electrochemical gradient through active transport, NKA can also act as a signal transducer in the presence of CTS. Inflammation, in addition to importantly driving organism defense and survival mechanisms, can also modulate NKA activity and memory formation, as well as being relevant to many chronic illnesses, neurodegenerative diseases, and mood disorders. The aim of the current review is to highlight the recent advances as to the role of CTS and NKA in inflammatory process, with a particular focus in the central nervous system.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Cristoforo Scavone,
| |
Collapse
|
23
|
Quaranta G, Maremmani AGI, Perugi G. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome. Case Rep Psychiatry 2015; 2015:273192. [PMID: 26495149 PMCID: PMC4606164 DOI: 10.1155/2015/273192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022] Open
Abstract
Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment.
Collapse
Affiliation(s)
- Giuseppe Quaranta
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Angelo Giovanni Icro Maremmani
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
| | - Giulio Perugi
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100 Pisa, Italy
- The Institute of Behavioural Science “G. De Lisio”, Via di Pratale 3, 56127 Pisa, Italy
| |
Collapse
|
24
|
Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. Alcohol use in bipolar disorder: A neurobiological model to help predict susceptibility, select treatments and attenuate cortical insult. Neurosci Biobehav Rev 2015; 56:193-206. [PMID: 26192106 DOI: 10.1016/j.neubiorev.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
In a series of neurophysiological and neuroimaging studies we investigated the neurobiology related to alcohol use in young people with bipolar disorder. Impairments were identified across frontal and temporal representations of event-related potential and proton magnetic resonance spectroscopy markers; mismatch negativity and in vivo glutathione, respectively. We propose these findings reflect impairments in the N-methyl-D-aspartate receptor and antioxidant capacity. This review seeks to place these findings within the broader literature in the context of two propositions: 1. Pathophysiological impairments in N-methyl-D-aspartate receptor functioning in bipolar disorder contribute to susceptibility toward developing alcohol problems. 2. Alcohol aggravates bipolar disorder neuroprogression via oxidative stress. A neurobiological model that incorporates these propositions is presented, with a focus on the potential for N-methyl-D-aspartate receptor antagonism and glutathione augmentation as potential adjunctive pharmacotherapies to treat the comorbidity. While this review highlights the importance of alcohol monitoring and reduction strategies in the treatment of bipolar disorder, the clinical impact of the proposed model remains limited by the lack of controlled trials of novel pharmacological interventions.
Collapse
Affiliation(s)
- Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Jim Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Ian B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Daniel F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|