1
|
Santos-López G, Panduro A, Sosa-Jurado F, Fierro NA, Lira R, Márquez-Domínguez L, Cerbón M, Méndez-Sánchez N, Roman S. Advances in the Elimination of Viral Hepatitis in Mexico: A Local Perspective on the Global Initiative. Pathogens 2024; 13:859. [PMID: 39452730 PMCID: PMC11510378 DOI: 10.3390/pathogens13100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Viral hepatitis (A-E) presents a major global health challenge. In 2015, the World Health Organization (WHO) launched an initiative to eliminate viral hepatitis, with the aim of reducing new infections by 90% and deaths by 65% by 2030. Mexico is one of 38 focus countries identified by the WHO, collectively accounting for 80% of global infections and deaths. While hepatitis B and C are commonly diagnosed in Mexico, routine diagnosis for hepatitis D and E is lacking, with no specific epidemiological data available. In 2020, Mexico implemented the National Hepatitis C Elimination Program, focusing on preventing new infections, reducing complications like cirrhosis and hepatocellular carcinoma, ensuring access to treatment, and improving patient care. However, this program has not been extended to hepatitis B and E. Addressing the challenges of viral hepatitis control in Mexico requires increased resource allocation, expanded diagnosis, vaccination for hepatitis A and B, and treatment coverage for hepatitis B and C, along with multisectoral engagement. This work provides an overview of Mexico's response to the global initiative, highlighting its progress, challenges, and areas of opportunity.
Collapse
Affiliation(s)
- Gerardo Santos-López
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec 74360, Mexico; (F.S.-J.); (L.M.-D.)
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
| | - Arturo Panduro
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara 44280, Mexico
| | - Francisca Sosa-Jurado
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec 74360, Mexico; (F.S.-J.); (L.M.-D.)
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
| | - Nora A. Fierro
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rosalía Lira
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Unidad de Investigación Biomédica Oncológica Genómica, Hospital Gineco Pediatría 3A, OOAD Cd Mx Norte, Instituto Mexicano del Seguro Social, Mexico City 07760, Mexico
| | - Luis Márquez-Domínguez
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec 74360, Mexico; (F.S.-J.); (L.M.-D.)
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
| | - Marco Cerbón
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nahum Méndez-Sánchez
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | - Sonia Roman
- National Network of Viral Hepatitis Researchers, Mexico City, Mexico; (A.P.); (N.A.F.); (R.L.); (M.C.); (N.M.-S.)
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Health Sciences Center, University of Guadalajara, Guadalajara 44280, Mexico
| |
Collapse
|
2
|
Selvaraj C, Rudhra O, Alothaim AS, Alkhanani M, Singh SK. Structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:59-83. [PMID: 35534116 DOI: 10.1016/bs.apcsb.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzymes, which are biological molecules, are constructed from polypeptide chains, and these molecules are activated through reaction mechanisms. It is the role of enzymes to speed up chemical reactions that are used to build or break down cell structures. Activation energy is reduced by the enzymes' selective binding of substrates in a protected environment. In enzyme tertiary structures, the active sites are commonly situated in a "cleft," which necessitates the diffusion of substrates and products. The amino acid residues of the active site may be far apart in the primary structure owing to the folding required for tertiary structure. Due to their critical role in substrate binding and attraction, changes in amino acid structure at or near the enzyme's active site usually alter enzyme activity. At the enzyme's active site, or where the chemical reactions occur, the substrate is bound. Enzyme substrates are the primary targets of the enzyme's active site, which is designed to assist in the chemical reaction. This chapter elucidates the summary of structure and chemistry of enzymes, their active site features, charges and role of water in the structures to clarify the biochemistry of the enzymes in the depth of atomic features.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Ondipilliraja Rudhra
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Mustfa Alkhanani
- Emergency Service Department, College of Applied Sciences, Al Maarefa University, Riyadh, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Szirovicza L, Hetzel U, Kipar A, Hepojoki J. Short '1.2× Genome' Infectious Clone Initiates Kolmiovirid Replication in Boa constrictor Cells. Viruses 2022; 14:107. [PMID: 35062311 PMCID: PMC8778117 DOI: 10.3390/v14010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported "2× genome" and the "1.2× genome" infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.
Collapse
Affiliation(s)
- Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
| |
Collapse
|
4
|
Tavanez JP, Caetano R, Branco C, Brito IM, Miragaia-Pereira A, Vassilevskaia T, Quina AS, Cunha C. Hepatitis delta virus interacts with splicing factor SF3B155 and alters pre-mRNA splicing of cell cycle control genes. FEBS J 2020; 287:3719-3732. [PMID: 32352217 DOI: 10.1111/febs.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis delta virus (HDV) is the agent responsible for the most severe form of human viral hepatitis. The HDV genome consists of a single-stranded circular RNA molecule that encodes for one single protein, the delta antigen. Given its simplicity, HDV must make use of several host cellular proteins to accomplish its life cycle processes, including transcription, replication, post-transcriptional, and post-translational modifications. Consequently, identification of the interactions established between HDV components and host proteins assumes a pivotal interest in the search of novel therapeutic targets. Here, we used the yeast three-hybrid system to screen a human liver cDNA library to identify host proteins that interact with the HDV genomic RNA. One of the identified proteins corresponded to the splicing factor SF3B155, a component of the U2snRNP complex that is essential for the early recognition of 3' splice sites in the pre-mRNAs of human genes. We show that the interaction between the HDV genomic RNA and SF3B155 occurs in vivo and that the expression of HDV promotes changes in splicing of human genes whose alternative splicing is SF3B155-dependent. We further show that expression of HDV triggers alterations in several constitutive and alternative splicing events in the tumor suppressor RBM5 transcript, with consequent reduction of its protein levels. This is the first description that HDV expression promotes changes in the splicing of human genes, and we suggest that the HDV-induced alternative splicing changes, through SF3B155 sequester, may contribute for the early progression to hepatocellular carcinoma characteristic of HDV-infected patients.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Rafael Caetano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Cristina Branco
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Inês Margarida Brito
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Miragaia-Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Tatiana Vassilevskaia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| | - Ana Sofia Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Portugal
| |
Collapse
|
5
|
Abstract
Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.
Collapse
|
6
|
Nogueira-Lima FS, Botelho-Souza LF, Roca TP, Santos AOD, Oliveira SDC, Queiroz JADS, Santos-Alves FAGD, Salcedo JMV, Vieira DS. Phylodynamic and Phylogeographic Analysis of Hepatitis Delta Virus Genotype 3 Isolated in South America. Viruses 2019; 11:v11110995. [PMID: 31671829 PMCID: PMC6893442 DOI: 10.3390/v11110995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is a globally distributed agent, and its genetic variability allows for it to be organized into eight genotypes with different geographic distributions. In South America, genotype 3 (HDV-3) is frequently isolated and responsible for the most severe form of infection. The objective of this study was to evaluate the evolutionary and epidemiological dynamics of HDV-3 over the years and to describe its distribution throughout this continent in an evolutionary perspective. While using Bayesian analysis, with strains being deposited in the Nucleotide database, the most recent common ancestor was dated back to 1964 and phylogenetic analysis indicated that the dispersion may have started in Brazil, spreading to Venezuela and then to Colombia, respectively. Exponential growth in the effective number of infections was observed between the 1950s and 1970s, years after the first report of the presence of HDV on the continent, during the Labrea Black Fever outbreak, which showed that the virus continued to spread, increasing the number of cases decades after the first reports. Subsequently, the analysis showed a decrease in the epidemiological levels of HDV, which was probably due to the implantation of the vaccine against its helper virus, hepatitis B virus, and serological screening methods implemented in the blood banks.
Collapse
Affiliation(s)
- Felipe Souza Nogueira-Lima
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- National Institute of Epidemiology of Western Amazonia-INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Luan Felipo Botelho-Souza
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- National Institute of Epidemiology of Western Amazonia-INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Tárcio Peixoto Roca
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Alcione Oliveira Dos Santos
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- National Institute of Epidemiology of Western Amazonia-INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Suyane da Costa Oliveira
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Jackson Alves da Silva Queiroz
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
| | - Fabianne Araújo Gomes Dos Santos-Alves
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Juan Miguel Villalobos Salcedo
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- National Institute of Epidemiology of Western Amazonia-INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| | - Deusilene Souza Vieira
- Oswaldo Cruz Foundation of Rondônia-FIOCRUZ/RO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Research Center in Tropical Medicine of Rondônia -CEPEM/RO, Porto Velho RO 76812 329, Rondônia, Brazil.
- National Institute of Epidemiology of Western Amazonia-INCT EpiAmO, Porto Velho RO 76812 245, Rondônia, Brazil.
- Postgraduate Program in Experimental Biology of the Federal University of Rondônia-PGBIOEXP/UNIR, Porto Velho RO 76801 059, Rondônia, Brazil.
| |
Collapse
|
7
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
8
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
9
|
Nsokolo B, Kanunga A, Sinkala E, Zyambo K, Kumwenda D, Chama D, Muyinda G, Vinikoor M, Ijaz S, Tedder R, Elmdaah AKA, Jones M, Chiluba C, Mudenda V, Goldin RD, Foster G, Kelly P. Stage of disease in hepatitis B virus infection in Zambian adults is associated with large cell change but not well defined using classic biomarkers. Trans R Soc Trop Med Hyg 2019; 111:425-432. [PMID: 29378031 PMCID: PMC5914341 DOI: 10.1093/trstmh/trx077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular malignancy in young adults is a prominent feature of hepatitis B virus (HBV) infection in southern Africa. Here we report a cross-sectional study of liver pathology correlated with biomarkers in adults with HBV infection in Zambia. Methods We analysed liver biopsies from Zambian patients with persistent HBV infection. Results We analysed 104 patients with HBV infection and evidence of liver disease. We obtained liver biopsies from 53 adults; of these, 12 (23%) were hepatitis B e antigen seropositive. The genotype was evenly distributed between A and E. One biopsy showed malignancy. Stage was 3 or more in 11 of 52 (21%) biopsies free of malignancy and lobular inflammation was found in 50 (94%). Neither alanine aminotransferase (ALT) nor the γ-glutamyl transferase:platelet ratio (GPR) were correlated with the stage of disease but were correlated with total Ishak score (ρ=0.47, p=0.0004 and ρ=0.33, p=0.02, respectively). Large cell change was observed in 10 of 11 biopsies with fibrosis stage 3 or more and 16 of 41 with early disease (p=0.005). Serum α-fetoprotein was elevated, although still within the normal range, in patients with large cell change (median 3.6 [interquartile range {IQR} 1.6–5.1]) compared with those without (1.7 [IQR 1.0–2.8]; p=0.03). Neither ALT nor GPR predicted large cell change. Conclusions Large cell change was common in young HBV-infected adults in Zambia. Only serum α-fetoprotein was identified as a biomarker of this phenotype.
Collapse
Affiliation(s)
- Bright Nsokolo
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Anne Kanunga
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Edford Sinkala
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Kanekwa Zyambo
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Dia Kumwenda
- Zambia National Blood Transfusion Service, University Teaching Hospital, Lusaka, Zambia
| | - David Chama
- Zambia National Blood Transfusion Service, University Teaching Hospital, Lusaka, Zambia
| | - Gabriel Muyinda
- Zambia National Blood Transfusion Service, University Teaching Hospital, Lusaka, Zambia
| | | | - Samreen Ijaz
- Blood-Borne Virus Unit, Microbiology Services, Public Health England, Colindale, UK
| | - Richard Tedder
- Blood-Borne Virus Unit, Microbiology Services, Public Health England, Colindale, UK
| | - Ali Khalifa A Elmdaah
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meleri Jones
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Clarence Chiluba
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Victor Mudenda
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Robert D Goldin
- Department of Hepatology, Imperial College London, London, UK
| | - Graham Foster
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul Kelly
- TROPGAN, Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia.,Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Transmission of Hepatitis B and D Viruses in an African Rural Community. mSystems 2018; 3:mSystems00120-18. [PMID: 30246145 PMCID: PMC6143728 DOI: 10.1128/msystems.00120-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), an estimated 257 million people worldwide are chronically infected with hepatitis B virus (HBV), with approximately 15 million of them being coinfected with hepatitis D virus (HDV). To investigate the prevalence and transmission of HBV and HDV within the general population of a rural village in Cameroon, we analyzed serum samples from most (401/448) of the villagers. HBV surface antigen (HBsAg) was detected in 54 (13.5%) of the 401 samples, with 15% of them also containing anti-HDV antibodies. Although Cameroon has integrated HBV vaccination into their Expanded Program on Immunization for newborns in 2005, an HBsAg carriage rate of 5% was found in children below the age of 5 years. Of the 54 HBsAg-positive samples, 49 HBV pre-S/S sequences (7 genotype A and 42 genotype E sequences) could be amplified by PCR. In spite of the extreme geographical restriction in the recruitment of study participants, a remarkable genetic diversity within HBV genotypes was observed. Phylogenetic analysis of the sequences obtained from PCR products combined with demographic information revealed that the presence of some genetic variants was restricted to members of one household, indicative of intrafamilial transmission, which appears to take place at least in part perinatally from mother to child. Other genetic variants were more widely distributed, reflecting horizontal interhousehold transmission. Data for two households with more than one HBV-HDV-coinfected individual indicate that the two viruses are not necessarily transmitted together, as family members with identical HBV sequences had different HDV statuses. IMPORTANCE This study revealed that the prevalence of HBV and HDV in a rural area of Cameroon is extremely high, underlining the pressing need for the improvement of control strategies. Systematic serological and phylogenetic analyses of HBV sequences turned out to be useful tools to identify networks of virus transmission within and between households. The high HBsAg carriage rate found among children demonstrates that implementation of the HBV birth dose vaccine and improvement of vaccine coverage will be key elements in preventing both HBV and HDV infections. In addition, the high HBsAg carriage rate in adolescents and adults emphasizes the need for identification of chronically infected individuals and linkage to WHO-recommended treatment to prevent progression to liver cirrhosis and hepatocellular carcinoma.
Collapse
|
11
|
Soriano V, Labarga P, de Mendoza C, Fernández-Montero JV, Treviño A, Benítez-Gutiérrez L, Peña JM, Barreiro P. Delta hepatitis: new approaches to therapy. Future Virol 2016. [DOI: 10.2217/fvl-2015-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis delta virus (HDV) infection is a neglected disease despite causing the most severe form of viral hepatitis. Over 15 million people are infected worldwide. IFN-α is largely inefficient and poorly tolerated. The discovery of sodium taurocholate cotransporting polypeptide as the cell receptor for HBV (and consequently for HDV) has allowed development of viral entry inhibitors (i.e., myrcludex-B). More recently, prenylation inhibitors (i.e., lonafarnib) that disrupt virion assembly are being tested. At this time, sustained suppression of HDV replication is the primary goal of hepatitis delta treatment, being associated with normalization of liver enzymes and histological improvement. The lack of persistent forms of HDV-RNA could provide unique opportunities for hepatitis delta cure using specific antivirals, even in the face of persistent HBV cccDNA.
Collapse
Affiliation(s)
- Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital, Madrid, Spain
| | - Pablo Labarga
- Department of Internal Medicine, La Luz Clinic, Madrid, Spain
| | - Carmen de Mendoza
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Majadahonda, Spain
| | | | - Ana Treviño
- Infectious Diseases Unit, La Paz University Hospital, Madrid, Spain
| | - Laura Benítez-Gutiérrez
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Majadahonda, Spain
| | - José M Peña
- Infectious Diseases Unit, La Paz University Hospital, Madrid, Spain
| | - Pablo Barreiro
- Infectious Diseases Unit, La Paz University Hospital, Madrid, Spain
| |
Collapse
|