1
|
Jan C, He M, Vingrys A, Zhu Z, Stafford RS. Diagnosing glaucoma in primary eye care and the role of Artificial Intelligence applications for reducing the prevalence of undetected glaucoma in Australia. Eye (Lond) 2024; 38:2003-2013. [PMID: 38514852 PMCID: PMC11269618 DOI: 10.1038/s41433-024-03026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Glaucoma is the commonest cause of irreversible blindness worldwide, with over 70% of people affected remaining undiagnosed. Early detection is crucial for halting progressive visual impairment in glaucoma patients, as there is no cure available. This narrative review aims to: identify reasons for the significant under-diagnosis of glaucoma globally, particularly in Australia, elucidate the role of primary healthcare in glaucoma diagnosis using Australian healthcare as an example, and discuss how recent advances in artificial intelligence (AI) can be implemented to improve diagnostic outcomes. Glaucoma is a prevalent disease in ageing populations and can have improved visual outcomes through appropriate treatment, making it essential for general medical practice. In countries such as Australia, New Zealand, Canada, USA, and the UK, optometrists serve as the gatekeepers for primary eye care, and glaucoma detection often falls on their shoulders. However, there is significant variation in the capacity for glaucoma diagnosis among eye professionals. Automation with Artificial Intelligence (AI) analysis of optic nerve photos can help optometrists identify high-risk changes and mitigate the challenges of image interpretation rapidly and consistently. Despite its potential, there are significant barriers and challenges to address before AI can be deployed in primary healthcare settings, including external validation, high quality real-world implementation, protection of privacy and cybersecurity, and medico-legal implications. Overall, the incorporation of AI technology in primary healthcare has the potential to reduce the global prevalence of undiagnosed glaucoma cases by improving diagnostic accuracy and efficiency.
Collapse
Affiliation(s)
- Catherine Jan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.
- Ophthalmology, Department of Surgery, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
- Lost Child's Vision Project, Sydney, NSW, Australia.
| | - Mingguang He
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye and Vision Research, The Hong Kong Polytechnic University, Kowloon, TU428, Hong Kong SAR
| | - Algis Vingrys
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Randall S Stafford
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Chen D, Ran Ran A, Fang Tan T, Ramachandran R, Li F, Cheung CY, Yousefi S, Tham CCY, Ting DSW, Zhang X, Al-Aswad LA. Applications of Artificial Intelligence and Deep Learning in Glaucoma. Asia Pac J Ophthalmol (Phila) 2023; 12:80-93. [PMID: 36706335 DOI: 10.1097/apo.0000000000000596] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 01/28/2023] Open
Abstract
Diagnosis and detection of progression of glaucoma remains challenging. Artificial intelligence-based tools have the potential to improve and standardize the assessment of glaucoma but development of these algorithms is difficult given the multimodal and variable nature of the diagnosis. Currently, most algorithms are focused on a single imaging modality, specifically screening and diagnosis based on fundus photos or optical coherence tomography images. Use of anterior segment optical coherence tomography and goniophotographs is limited. The majority of algorithms designed for disease progression prediction are based on visual fields. No studies in our literature search assessed the use of artificial intelligence for treatment response prediction and no studies conducted prospective testing of their algorithms. Additional challenges to the development of artificial intelligence-based tools include scarcity of data and a lack of consensus in diagnostic criteria. Although research in the use of artificial intelligence for glaucoma is promising, additional work is needed to develop clinically usable tools.
Collapse
Affiliation(s)
- Dinah Chen
- Department of Ophthalmology, NYU Langone Health, New York City, NY
- Genentech Inc, South San Francisco, CA
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fang Tan
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
| | | | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Siamak Yousefi
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN
| | - Clement C Y Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Lam Kin Chung, Jet King-Shing Ho Glaucoma Treatment And Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Daniel S W Ting
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Center, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | | |
Collapse
|
3
|
Marques R, Andrade De Jesus D, Barbosa-Breda J, Van Eijgen J, Stalmans I, van Walsum T, Klein S, G Vaz P, Sánchez Brea L. Automatic Segmentation of the Optic Nerve Head Region in Optical Coherence Tomography: A Methodological Review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106801. [PMID: 35429812 DOI: 10.1016/j.cmpb.2022.106801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The optic nerve head (ONH) represents the intraocular section of the optic nerve, which is prone to damage by intraocular pressure (IOP). The advent of optical coherence tomography (OCT) has enabled the evaluation of novel ONH parameters, namely the depth and curvature of the lamina cribrosa (LC). Together with the Bruch's membrane minimum-rim-width (BMO-MRW), these seem to be promising ONH parameters for diagnosis and monitoring of retinal diseases such as glaucoma. Nonetheless, these OCT derived biomarkers are mostly extracted through manual segmentation, which is time-consuming and prone to bias, thus limiting their usability in clinical practice. The automatic segmentation of ONH in OCT scans could further improve the current clinical management of glaucoma and other diseases. This review summarizes the current state-of-the-art in automatic segmentation of the ONH in OCT. PubMed and Scopus were used to perform a systematic review. Additional works from other databases (IEEE, Google Scholar and ARVO IOVS) were also included, resulting in a total of 29 reviewed studies. For each algorithm, the methods, the size and type of dataset used for validation, and the respective results were carefully analysed. The results show a lack of consensus regarding the definition of segmented regions, extracted parameters and validation approaches, highlighting the importance and need of standardized methodologies for ONH segmentation. Only with a concrete set of guidelines, these automatic segmentation algorithms will build trust in data-driven segmentation models and be able to enter clinical practice.
Collapse
Affiliation(s)
- Rita Marques
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, University of Coimbra, Coimbra, Portugal; Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Danilo Andrade De Jesus
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
| | - João Barbosa-Breda
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal; Ophthalmology Department, São João Universitary Hospital Center, Porto, Portugal
| | - Jan Van Eijgen
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
| | - Theo van Walsum
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Pedro G Vaz
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Luisa Sánchez Brea
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
4
|
WU JOHSUAN, NISHIDA TAKASHI, WEINREB ROBERTN, LIN JOUWEI. Performances of Machine Learning in Detecting Glaucoma Using Fundus and Retinal Optical Coherence Tomography Images: A Meta-Analysis. Am J Ophthalmol 2022; 237:1-12. [PMID: 34942113 DOI: 10.1016/j.ajo.2021.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To evaluate the performance of machine learning (ML) in detecting glaucoma using fundus and retinal optical coherence tomography (OCT) images. DESIGN Meta-analysis. METHODS PubMed and EMBASE were searched on August 11, 2021. A bivariate random-effects model was used to pool ML's diagnostic sensitivity, specificity, and area under the curve (AUC). Subgroup analyses were performed based on ML classifier categories and dataset types. RESULTS One hundred and five studies (3.3%) were retrieved. Seventy-three (69.5%), 30 (28.6%), and 2 (1.9%) studies tested ML using fundus, OCT, and both image types, respectively. Total testing data numbers were 197,174 for fundus and 16,039 for OCT. Overall, ML showed excellent performances for both fundus (pooled sensitivity = 0.92 [95% CI, 0.91-0.93]; specificity = 0.93 [95% CI, 0.91-0.94]; and AUC = 0.97 [95% CI, 0.95-0.98]) and OCT (pooled sensitivity = 0.90 [95% CI, 0.86-0.92]; specificity = 0.91 [95% CI, 0.89-0.92]; and AUC = 0.96 [95% CI, 0.93-0.97]). ML performed similarly using all data and external data for fundus and the external test result of OCT was less robust (AUC = 0.87). When comparing different classifier categories, although support vector machine showed the highest performance (pooled sensitivity, specificity, and AUC ranges, 0.92-0.96, 0.95-0.97, and 0.96-0.99, respectively), results by neural network and others were still good (pooled sensitivity, specificity, and AUC ranges, 0.88-0.93, 0.90-0.93, 0.95-0.97, respectively). When analyzed based on dataset types, ML demonstrated consistent performances on clinical datasets (fundus AUC = 0.98 [95% CI, 0.97-0.99] and OCT AUC = 0.95 [95% 0.93-0.97]). CONCLUSIONS Performance of ML in detecting glaucoma compares favorably to that of experts and is promising for clinical application. Future prospective studies are needed to better evaluate its real-world utility.
Collapse
|
5
|
Raja H, Akram MU, Shaukat A, Khan SA, Alghamdi N, Khawaja SG, Nazir N. Extraction of Retinal Layers Through Convolution Neural Network (CNN) in an OCT Image for Glaucoma Diagnosis. J Digit Imaging 2020; 33:1428-1442. [PMID: 32968881 DOI: 10.1007/s10278-020-00383-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 11/26/2022] Open
Abstract
Glaucoma is a progressive and deteriorating optic neuropathy that leads to visual field defects. The damage occurs as glaucoma is irreversible, so early and timely diagnosis is of significant importance. The proposed system employs the convolution neural network (CNN) for automatic segmentation of the retinal layers. The inner limiting membrane (ILM) and retinal pigmented epithelium (RPE) are used to calculate cup-to-disc ratio (CDR) for glaucoma diagnosis. The proposed system uses structure tensors to extract candidate layer pixels, and a patch across each candidate layer pixel is extracted, which is classified using CNN. The proposed framework is based upon VGG-16 architecture for feature extraction and classification of retinal layer pixels. The output feature map is merged into SoftMax layer for classification and produces probability map for central pixel of each patch and decides whether it is ILM, RPE, or background pixels. Graph search theory refines the extracted layers by interpolating the missing points, and these extracted ILM and RPE are finally used to compute CDR value and diagnose glaucoma. The proposed system is validated using a local dataset of optical coherence tomography images from 196 patients, including normal and glaucoma subjects. The dataset contains manually annotated ILM and RPE layers; manually extracted patches for ILM, RPE, and background pixels; CDR values; and eventually final finding related to glaucoma. The proposed system is able to extract ILM and RPE with a small absolute mean error of 6.03 and 5.56, respectively, and it finds CDR value within average range of ± 0.09 as compared with glaucoma expert. The proposed system achieves average sensitivity, specificity, and accuracies of 94.6, 94.07, and 94.68, respectively.
Collapse
Affiliation(s)
- Hina Raja
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - M Usman Akram
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Arslan Shaukat
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Shoab Ahmed Khan
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Norah Alghamdi
- Department of Computer Science, Princess Nora Bint Abdurahman University, Riyadh, Saudi Arabia
| | - Sajid Gul Khawaja
- Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Noman Nazir
- Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan
| |
Collapse
|
6
|
Sarhan A, Rokne J, Alhajj R. Glaucoma detection using image processing techniques: A literature review. Comput Med Imaging Graph 2019; 78:101657. [PMID: 31675645 DOI: 10.1016/j.compmedimag.2019.101657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 11/26/2022]
Abstract
The term glaucoma refers to a group of heterogeneous diseases that cause the degeneration of retinal ganglion cells (RGCs). The degeneration of RGCs leads to two main issues: (i) structural changes to the optic nerve head as well as the nerve fiber layer, and (ii) simultaneous functional failure of the visual field. These two effects of glaucoma may lead to peripheral vision loss and, if the condition is left to progress it may eventually lead to blindness. No cure for glaucoma exists apart from early detection and treatment by optometrists and ophthalmologists. The degeneration of RGCs is normally detected from retinal images which are assessed by an expert. These retinal images also provide other vital information about the health of an eye. Thus, it is essential to develop automated techniques for extracting this information. The rapid development of digital images and computer vision techniques have increased the potential for analysis of eye health from images. This paper surveys current approaches to detect glaucoma from 2D and 3D images; both the limitations and possible future directions are highlighted. This study also describes the datasets used for retinal analysis along with existing evaluation algorithms. The main topics covered by this study may be enumerated as follows.
Collapse
Affiliation(s)
- Abdullah Sarhan
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada; Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|