1
|
Lin F, Zou X, Su J, Wan L, Wu S, Xu H, Zeng Y, Li Y, Chen X, Cai G, Ye Q, Cai G. Cortical thickness and white matter microstructure predict freezing of gait development in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:16. [PMID: 38195780 PMCID: PMC10776850 DOI: 10.1038/s41531-024-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in patients with Parkinson's disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson's Disease Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union Hospital Parkinson's Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM) learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men, mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness, and white matter fiber exhibited better performance (AUC, 0.67-0.88). More importantly, SVM-radial kernel models trained using random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xinyang Zou
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jiaqi Su
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Lijun Wan
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Shenglong Wu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Haoling Xu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yuqi Zeng
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yongjie Li
- College of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Guofa Cai
- College of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Suharto AP, Sensusiati AD, Hamdan M, Bastiana DS. Structural magnetic resonance imaging in Parkinson disease with freezing of gait: A systematic review of literature. J Neurosci Rural Pract 2023; 14:399-405. [PMID: 37692820 PMCID: PMC10483193 DOI: 10.25259/jnrp_107_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 09/12/2023] Open
Abstract
Objective This review aims to the existing structural neuroimaging literature in Parkinson disease presenting with freezing of gait. The summary of this article provides an opportunity for a better understanding of the structural findings of freezing of gait in Parkinson disease based on MRI. Methods This systematic review of literature follows the procedures as described by the guideline of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results Initial searches yielded 545 documents. After exclusions, 11 articles were included into our study. Current findings of structural MRI on freezing of gait in Parkinson disease are associated with structural damage between sensorimotor-related cortical grey matter structures and thalamus, but not cerebellum and smaller systems, as well as extensive injuries on white matter connecting between those structures. Conclusion Current findings of structural MRI on freezing of gait in Parkinson disease are associated with structural damage between sensorimotor-related cortical grey matter structures and thalamus, but not cerebellum and smaller systems, as well as extensive injuries on white matter connecting between those structures.
Collapse
Affiliation(s)
- Ade Pambayu Suharto
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| | - Anggraini Dwi Sensusiati
- Department Radiology, Faculty of Medicine, Airlangga University - Universitas Airlangga Hospital, Surabaya, East Java, Indonesia
| | - Muhammad Hamdan
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| | - Dewi Setyaning Bastiana
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
3
|
Wang Y, Li D, Chen Y, Zhu S, Jiang X, Jiang Y, Gu R, Shen B, Zhu J, Pan Y, Yan J, Zhang L. Clinical features of minor hallucinations in different phenotypes of Parkinson's disease: A cross-sectional study. Front Neurol 2023; 14:1158188. [PMID: 37034082 PMCID: PMC10079986 DOI: 10.3389/fneur.2023.1158188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Background Minor hallucinations (MHs) are the most common psychiatric symptom associated with Parkinson's disease (PDPsy), but little is known about their characteristics in different motor phenotypes, especially postural instability gait difficulty (PIGD). The aim of this study was to explore the clinical features of MHs in different subtypes of PD. Methods In this cross-sectional study, 213 patients with Parkinson's disease (PD) were recruited, and the data obtained included comprehensive demographics, motor subtypes, clinical scale scores, and MH contents. Motor subtypes were classified as tremor-dominant (TD), PIGD or indeterminate according to Stebbins' method. Results A total of 213 PD patients were included: 90 (42.3%) TD patients, 98 (46.0%) PIGD patients and 25 (11.7%) indeterminate. In total, 70 (32.9%) patients experienced MHs. Compared to patients with the TD phenotype, we found that patients with the PIGD phenotype had more severe motor and nonmotor symptoms. They also had a higher incidence of visual illusions (VIs) and a shorter MH latency. Conclusion Our study demonstrated that compared to patients with the TD phenotype, patients with the PIGD phenotype had a higher incidence of MHs, especially VIs, which may lead to a higher incidence of visual hallucinations (VHs). They also had a shorter latency of MHs than patients with the TD phenotype, suggesting an earlier onset of MHs and a worse prognosis.
Collapse
|
4
|
Feng H, Jiang Y, Lin J, Qin W, Jin L, Shen X. Cortical activation and functional connectivity during locomotion tasks in Parkinson's disease with freezing of gait. Front Aging Neurosci 2023; 15:1068943. [PMID: 36967824 PMCID: PMC10032375 DOI: 10.3389/fnagi.2023.1068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Freezing of gait (FoG) is a severely disabling symptom in Parkinson's disease (PD). The cortical mechanisms underlying FoG during locomotion tasks have rarely been investigated. Objectives We aimed to compare the cerebral haemodynamic response during FoG-prone locomotion tasks in patients with PD and FoG (PD-FoG), patients with PD but without FoG (PD-nFoG), and healthy controls (HCs). Methods Twelve PD-FoG patients, 10 PD-nFoG patients, and 12 HCs were included in the study. Locomotion tasks included normal stepping, normal turning and fast turning ranked as three difficulty levels based on kinematic requirements and probability of provoking FoG. During each task, we used functional near-infrared spectroscopy to capture concentration changes of oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB) that reflected cortical activation, and recorded task performance time. The cortical regions of interest (ROIs) were prefrontal cortex (PFC), supplementary motor area (SMA), premotor cortex (PMC), and sensorimotor cortex (SMC). Intra-cortical functional connectivity during each task was estimated based on correlation of ΔHBO2 between ROIs. Two-way multivariate ANOVA with task performance time as a covariate was conducted to investigate task and group effects on cerebral haemodynamic responses of ROIs. Z statistics of z-scored connectivity between ROIs were used to determine task and group effects on functional connectivity. Results PD-FoG patients spent a nearly significant longer time completing locomotion tasks than PD-nFoG patients. Compared with PD-nFoG patients, they showed weaker activation (less ΔHBO2) in the PFC and PMC. Compared with HCs, they had comparable ΔHBO2 in all ROIs but more negative ΔHHB in the SMC, whereas PD-nFoG showed SMA and PMC hyperactivity but more negative ΔHHB in the SMC. With increased task difficulty, ΔHBO2 increased in each ROI except in the PFC. Regarding functional connectivity during normal stepping, PD-FoG patients showed positive and strong PFC-PMC connectivity, in contrast to the negative PFC-PMC connectivity observed in HCs. They also had greater PFC-SMC connectivity than the other groups. However, they exhibited decreased SMA-SMC connectivity when task difficulty increased and had lower SMA-PMC connectivity than HCs during fast turning. Conclusion Insufficient compensatory cortical activation and depletion of functional connectivity during complex locomotion in PD-FoG patients could be potential mechanisms underlying FoG. Clinical trial registration Chinese clinical trial registry (URL: http://www.chictr.org.cn, registration number: ChiCTR2100042813).
Collapse
Affiliation(s)
- HongSheng Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - YanNa Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - JinPeng Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - WenTing Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - LingJing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xia Shen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen,
| |
Collapse
|
5
|
Steidel K, Ruppert MC, Palaghia I, Greuel A, Tahmasian M, Maier F, Hammes J, van Eimeren T, Timmermann L, Tittgemeyer M, Drzezga A, Pedrosa D, Eggers C. Dopaminergic pathways and resting-state functional connectivity in Parkinson's disease with freezing of gait. Neuroimage Clin 2021; 32:102899. [PMID: 34911202 PMCID: PMC8645514 DOI: 10.1016/j.nicl.2021.102899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Freezing of gait is a common phenomenon of advanced Parkinson's disease. Besides locomotor function per se, a role of cognitive deficits has been suggested. Limited evidence of associated dopaminergic deficits points to caudatal denervation. Further, altered functional connectivity within resting-state networks with importance for cognitive functions has been described in freezers. A potential pathophysiological link between both imaging findings has not yet been addressed. The current study sought to investigate the association between dopaminergic pathway dysintegrity and functional dysconnectivity in relation to FOG severity and cognitive performance in a well-characterized PD cohort undergoing high-resolution 6-[18F]fluoro-L-Dopa PET and functional MRI. The freezing of gait questionnaire was applied to categorize patients (n = 59) into freezers and non-freezers. A voxel-wise group comparison of 6-[18F]fluoro-L-Dopa PET scans with focus on striatum was performed between both well-matched and neuropsychologically characterized patient groups. Seed-to-voxel resting-state functional connectivity maps of the resulting dopamine depleted structures and dopaminergic midbrain regions were created and compared between both groups. For a direct between-group comparison of dopaminergic pathway integrity, a molecular connectivity approach was conducted on 6-[18F]fluoro-L-Dopa scans. With respect to striatal regions, freezers showed significant dopaminergic deficits in the left caudate nucleus, which exhibited altered functional connectivity with regions of the visual network. Regarding midbrain structures, the bilateral ventral tegmental area showed altered functional coupling to regions of the default mode network. An explorative examination of the integrity of dopaminergic pathways by molecular connectivity analysis revealed freezing-associated impairments in mesolimbic and mesocortical pathways. This study represents the first characterization of a link between dopaminergic pathway dysintegrity and altered functional connectivity in Parkinson's disease with freezing of gait and hints at a specific involvement of striatocortical and mesocorticolimbic pathways in freezers.
Collapse
Affiliation(s)
- Kenan Steidel
- Department of Neurology, University Hospital of Marburg, Germany.
| | - Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Irina Palaghia
- Department of Neurology, University Hospital of Marburg, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Germany
| | - Masoud Tahmasian
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn- Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn- Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
| | - David Pedrosa
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| |
Collapse
|
6
|
Sheng W, Guo T, Zhou C, Wu J, Gao T, Pu J, Zhang B, Zhang M, Yang Y, Guan X, Xu X. Altered Cortical Cholinergic Network in Parkinson's Disease at Different Stage: A Resting-State fMRI Study. Front Aging Neurosci 2021; 13:723948. [PMID: 34566625 PMCID: PMC8461333 DOI: 10.3389/fnagi.2021.723948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is critical in Parkinson’s disease (PD) pathology, which accounts for various clinical symptoms in PD patients. The substantia innominata (SI) provides the main source of cortical cholinergic innervation. Previous studies revealed cholinergic-related dysfunction in PD pathology at early stage. Since PD is a progressive disorder, alterations of cholinergic system function along with the PD progression have yet to be elucidated. Seventy-nine PD patients, including thirty-five early-stage PD patients (PD-E) and forty-four middle-to-late stage PD patients (PD-M), and sixty-four healthy controls (HC) underwent brain magnetic resonance imaging and clinical assessments. We employed seed-based resting-state functional connectivity analysis to explore the cholinergic-related functional alterations. Correlation analysis was used to investigate the relationship between altered functional connectivity and the severity of motor symptoms in PD patients. Results showed that both PD-E and PD-M groups exhibited decreased functional connectivity between left SI and left frontal inferior opercularis areas and increased functional connectivity between left SI and left cingulum middle area as well as right primary motor and sensory areas when comparing with HC. At advanced stages of PD, functional connectivity in the right primary motor and sensory areas was further increased. These altered functional connectivity were also significantly correlated with the Unified Parkinson’s Disease Rating Scale motor scores. In conclusion, this study illustrated that altered cholinergic function plays an important role in the motor disruptions in PD patients both in early stage as well as during the progression of the disease.
Collapse
Affiliation(s)
- Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Potvin-Desrochers A, Paquette C. Potential Non-invasive Brain Stimulation Targets to Alleviate Freezing of Gait in Parkinson's Disease. Neuroscience 2021; 468:366-376. [PMID: 34102265 DOI: 10.1016/j.neuroscience.2021.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Freezing of gait (FOG) is a common motor symptom in Parkinson's disease (PD). Although FOG reduces quality of life, affects mobility and increases the risk of falls, there are little to no effective treatments to alleviate FOG. Non-invasive brain stimulation (NIBS) has recently yielded attention as a potential treatment to reduce FOG symptoms however, stimulation parameters and protocols remain inconsistent and require further research. Specifically, targets for stimulation require careful review. Thus, with current neuroimaging and neuro-electrophysiological evidence, we consider potential cortical targets thought to be involved in the pathophysiology of FOG according to the Interference model, and within reach of NIBS. We note that the primary motor cortex, the supplementary motor area and the dorsolateral prefrontal cortex have already drawn attention as NIBS targets for FOG, but based on neuroimaging evidence the premotor cortex, the medial prefrontal cortex, the cerebellum, and more particularly, the posterior parietal cortex should be considered as potential regions for stimulation. We also discuss different methodological considerations, such as stimulation type, medication state, and hemisphere to target, and future perspectives for NIBS protocols in FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, Currie Gymnasium, 475 Pine Avenue West, McGill University, Montréal, Québec H2W 1S4, Canada; Integrated Program in Neuroscience, Montreal Neurological Institute, 3801 University Street, McGill University, Montréal, Québec H3A 2B4, Canada; Centre for Interdisciplinary Research in Rehabilitation (Jewish Rehabilitation Hospital Research Site and CISSS Laval), 3205 Place Alton-Goldbloom, Laval, Québec H7V 1R2, Canada.
| |
Collapse
|
8
|
Taximaimaiti R, Wang XP. Comparing the Clinical and Neuropsychological Characteristics of Parkinson's Disease With and Without Freezing of Gait. Front Neurosci 2021; 15:660340. [PMID: 33986641 PMCID: PMC8110824 DOI: 10.3389/fnins.2021.660340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Freezing of gait (FOG) is one of the most common walking problems in Parkinson’s disease (PD). Impaired cognitive function is believed to play an important role in developing and aggravating FOG in PD. But some evidence suggests that motor function discrepancy may affect testing results. Therefore, we think it is necessary for PD-FOG(+) and PD-FOG(−) patients to complete neuropsychological tests under similar motor conditions. Methods This study recruited 44 idiopathic PD patients [PD-FOG(+) n = 22, PD-FOG(−) n = 22] and 20 age-matched healthy controls (HC). PD-FOG(+) and PD-FOG(−) patients were matched for age, year of education, and Hoehn and Yahr score (H&Y). All participants underwent a comprehensive battery of neuropsychological assessment, and demographical and clinical information was also collected. Results PD patients showed poorer cognitive function, higher risks of depression and anxiety, and more neuropsychiatric symptoms compared with HC. When controlling for age, years of education, and H&Y, there were no statistical differences in cognitive function between PD-FOG(+) and PD-FOG(−) patients. But PD-FOG(+) patients had worse motor and non-motor symptoms than PD-FOG(−) patients. PD patients whose motor symptoms initiated with rigidity and initiated unilaterally were more likely to experience FOG. Conclusion Traditional neuropsychological testing may not be sensitive enough to detect cognitive impairment in PD. Motor symptoms initiated with rigidity and initiated unilaterally might be an important predictor of FOG.
Collapse
Affiliation(s)
- Reyisha Taximaimaiti
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
D'Cruz N, Vervoort G, Chalavi S, Dijkstra BW, Gilat M, Nieuwboer A. Thalamic morphology predicts the onset of freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:20. [PMID: 33654103 PMCID: PMC7925565 DOI: 10.1038/s41531-021-00163-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/14/2021] [Indexed: 11/08/2022] Open
Abstract
The onset of freezing of gait (FOG) in Parkinson's disease (PD) is a critical milestone, marked by a higher risk of falls and reduced quality of life. FOG is associated with alterations in subcortical neural circuits, yet no study has assessed whether subcortical morphology can predict the onset of clinical FOG. In this prospective multimodal neuroimaging cohort study, we performed vertex-based analysis of grey matter morphology in fifty-seven individuals with PD at study entry and two years later. We also explored the behavioral correlates and resting-state functional connectivity related to these local volume differences. At study entry, we found that freezers (N = 12) and persons who developed FOG during the course of the study (converters) (N = 9) showed local inflations in bilateral thalamus in contrast to persons who did not (non-converters) (N = 36). Longitudinally, converters (N = 7) also showed local inflation in the left thalamus, as compared to non-converters (N = 36). A model including sex, daily levodopa equivalent dose, and local thalamic inflation predicted conversion with good accuracy (AUC: 0.87, sensitivity: 88.9%, specificity: 77.8%). Exploratory analyses showed that local thalamic inflations were associated with larger medial thalamic sub-nuclei volumes and better cognitive performance. Resting-state analyses further revealed that converters had stronger thalamo-cortical coupling with limbic and cognitive regions pre-conversion, with a marked reduction in coupling over the two years. Finally, validation using the PPMI cohort suggested FOG-specific non-linear evolution of thalamic local volume. These findings provide markers of, and deeper insights into conversion to FOG, which may foster earlier intervention and better mobility for persons with PD.
Collapse
Affiliation(s)
- Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium.
| | - Griet Vervoort
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Sima Chalavi
- KU Leuven, Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, B-3000, Leuven, Belgium
| | - Bauke W Dijkstra
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Moran Gilat
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| |
Collapse
|
10
|
Nishida D, Mizuno K, Yamada E, Hanakawa T, Liu M, Tsuji T. The neural correlates of gait improvement by rhythmic sound stimulation in adults with Parkinson's disease - A functional magnetic resonance imaging study. Parkinsonism Relat Disord 2021; 84:91-97. [PMID: 33607527 DOI: 10.1016/j.parkreldis.2021.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Adults with Parkinson's disease (PD) experience gait disturbances that can sometimes be improved with rhythmic auditory stimulation (RAS); however, the underlying physiological mechanism for this improvement is not well understood. We investigated brain activation patterns in adults with PD and healthy controls (HC) using functional magnetic resonance imaging (fMRI) while participants imagined gait with or without RAS. METHODS Twenty-seven adults with PD who could walk independently and walked more smoothly with rhythmic auditory cueing than without it, and 25 age-matched HC participated in this study. Participants imagined gait in the presence of RAS or white noise (WN) during fMRI. RESULTS In the PD group, gait imagery with RAS activated cortical motor areas, including supplementary motor areas and the cerebellum, while gait imagery with WN additionally recruited the left parietal operculum. In HC, the induced activation was limited to cortical motor areas and the cerebellum for both the RAS and WN conditions. Within- and between-group analyses demonstrated that RAS reduced the activity of the left parietal operculum in the PD group but not in the HC group (condition-by-group interaction by repeated measures analysis of variance, p < 0.05). CONCLUSION During gait imagery in adults with PD, the left parietal operculum was less activated by RAS than by WN, while no change was observed in HC, suggesting that rhythmic auditory stimulation may support the sensory-motor networks involved in gait, thus alleviating the overload of the parietal operculum and compensating for its dysfunction in these patients.
Collapse
Affiliation(s)
- Daisuke Nishida
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Rehabilitation, Saiseikai Kanagawa-ken Hospital, Kanagawa, Japan; Department of Rehabilitation Medicine, School of Medicine Keio University, Tokyo, Japan
| | - Katsuhiro Mizuno
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Rehabilitation, Saiseikai Kanagawa-ken Hospital, Kanagawa, Japan; Department of Rehabilitation Medicine, School of Medicine Keio University, Tokyo, Japan.
| | - Emi Yamada
- Department of Clinical Physiology, School of Medicine Kyushu University, Fukuoka, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, School of Medicine Keio University, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, School of Medicine Keio University, Tokyo, Japan
| |
Collapse
|
11
|
Exploring Cortical Thickness Alteration in Parkinson Disease Patients with Freezing of Gaits. Neural Plast 2020; 2020:8874119. [PMID: 33354205 PMCID: PMC7735855 DOI: 10.1155/2020/8874119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Freezing of gait (FoG) is a disabling gait disorder that commonly occurs in advanced stages of Parkinson's disease (PD). The neuroanatomical mechanisms underlying FoG in PD are still unclear. The present study aims to explore alterations of structural gray matter (GM) in PD patients with FoG. Method: Twenty-four PD patients with FoG (FoG+), 37 PD patients without FoG (FoG-) and 24 healthy controls (HC) were included. All subjects underwent a standardized MRI protocol. The cortical thickness (CTh), segmentation volume without ventricles (BrainSegVolNotVent) and estimated total intracranial volume (eTIV) were analysed using the FreeSurfer pipeline. Results: CTh differences were found in the right middle temporal gyrus (rMTG) generally. Compared to that in HCs, the CTh of the rMTG in both the FoG+ and FoG- groups was smaller, while no significant difference between the FoG+ and FoG- groups. Correlation analyses demonstrated a negative correlation between the CTh of the rMTG and the UPDRS part II score in PD subjects, and a borderline significant correlation between the score of Freezing of Gait Questionnaire (FoGQ) and rMTG CTh. Additionally, receiver operating characteristic curve (ROC) analysis revealed a cut-off point of CTh =3.08 mm in the rMTG that could be used to differentiate PD patients and HCs (AUC =0.79, P <0.01). There were no differences in the BrainSegVolNotVent or eTIV among the 3 groups. Conclusions: Our findings currently suggest no significant difference between FoG+ and FoG- patients in terms of structural gray matter changes. However, decreased CTh in the rMTG related to semantic control may be used as a biomarker to differentiate PD patients and HCs.
Collapse
|
12
|
Bharti K, Suppa A, Tommasin S, Zampogna A, Pietracupa S, Berardelli A, Pantano P. Neuroimaging advances in Parkinson's disease with freezing of gait: A systematic review. Neuroimage Clin 2019; 24:102059. [PMID: 31795038 PMCID: PMC6864177 DOI: 10.1016/j.nicl.2019.102059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Freezing of gait (FOG) is a paroxysmal gait disorder that often occurs at advanced stages of Parkinson's disease (PD). FOG consists of abrupt walking interruption and severe difficulty in locomotion with an increased risk of falling. Pathophysiological mechanisms underpinning FOG in PD are still unclear. However, advanced MRI and nuclear medicine studies have gained relevant insights into the pathophysiology of FOG in PD. Neuroimaging studies have demonstrated structural and functional abnormalities in a number of cortical and subcortical brain regions in PD patients with FOG. In this paper, we systematically review existing neuroimaging literature on the structural and functional brain changes described in PD patients with FOG, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluate previous studies using various MRI techniques to estimate grey matter loss and white matter degeneration. Moreover, we review functional brain changes by examining functional MRI and nuclear medicine imaging studies. The current review provides up-to-date knowledge in this field and summarizes the possible mechanisms responsible for FOG in PD.
Collapse
Affiliation(s)
- Komal Bharti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | | | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
13
|
Gao Y, Nie K, Mei M, Guo M, Huang Z, Wang L, Zhao J, Huang B, Zhang Y, Wang L. Changes in Cortical Thickness in Patients With Early Parkinson's Disease at Different Hoehn and Yahr Stages. Front Hum Neurosci 2018; 12:469. [PMID: 30542273 PMCID: PMC6278611 DOI: 10.3389/fnhum.2018.00469] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/07/2018] [Indexed: 12/30/2022] Open
Abstract
Objectives: This study was designed to explore changes in cortical thickness in patients with early Parkinson’s disease (PD) at different Hoehn and Yahr (H-Y) stages and to demonstrate the association of abnormally altered brain regions with part III of the Unified Parkinson’s Disease Rating Scale (UPDRS-III). Materials and Methods: Sixty early PD patients and 29 age- and gender-matched healthy controls (HCs) were enrolled in this study. All PD patients underwent comprehensive clinical and neuropsychological evaluations and 3.0 T magnetic resonance scanning. Patients with H-Y stage ≤1.5 were included in the mild group, and all other patients were included in the moderate group. FreeSurfer software was used to calculate cortical thickness. We assessed the relationship between UPDRS-III and regional changes in cortical thinning, including the bilateral fusiform and the temporal lobe. Results: The average cortical thickness of the temporal pole, fusiform gyrus, insula of the left hemisphere and fusiform gyrus, isthmus cingulate cortex, inferior temporal gyrus, middle temporal cortex and posterior cingulate cortex of the right hemisphere exhibited significant decreasing trends in HCs group and PD groups (i.e., the mild group and moderate group). After controlling for the effects of age, gender, and disease duration, the UPDRS-III scores in patients with early PD were correlated with the cortical thickness of the left and right fusiform gyrus and the left temporal pole (p < 0.05). Conclusion: The average cortical thickness of specific brain regions reduced with increasing disease severity in early PD patients at different H-Y stages, and the UPDRS-III scores of early PD patients were correlated with cortical thickness of the bilateral fusiform gyrus and the left temporal pole.
Collapse
Affiliation(s)
- Yuyuan Gao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Mingjin Mei
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Manli Guo
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhiheng Huang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jiehao Zhao
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|