1
|
Charalampopoulou A, Barcellini A, Peloso A, Vanoli A, Cesari S, Icaro Cornaglia A, Bistika M, Croce S, Cobianchi L, Ivaldi GB, Locati LD, Magro G, Tabarelli de Fatis P, Pullia MG, Orlandi E, Facoetti A. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers (Basel) 2024; 16:2582. [PMID: 39061220 PMCID: PMC11274431 DOI: 10.3390/cancers16142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
- Hadron Academy PhD Course, School for Advanced Studies (IUSS), 27100 Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
| | - Andrea Peloso
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Unit of Histology and Embryology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Margarita Bistika
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Collegium Medicum, University of Social Sciences, 90-419 Łodz, Poland
| | | | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Medical Oncology Unit, Istituti Clinici Scientific Maugeri IRCCS, 27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, 27100 Pavia, Italy;
| | | | - Marco Giuseppe Pullia
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angelica Facoetti
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
3
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
4
|
Tardalkar K, Bhamare N, Kshersagar J, Chaudhari L, Deshpande N, Patil J, Sharma RK, Joshi MG. Recellularization of Acellular Xeno Kidney Scaffold: An In Vivo Method to Generate Bioartificial Kidney. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:77-92. [PMID: 37610657 DOI: 10.1007/5584_2023_785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A significant hurdle for kidney tissue engineering is reproducing the complex three-dimensional structure of the kidney. In our study, a stepwise approach of generating a reproducible Xeno kidney scaffold from a goat kidney is described, which can be implanted and recellularized by host cells. We have proposed a combination of sodium dodecyl sulfate and Triton-X-100-based protocol to generate a reproducible Xeno kidney scaffold, which was then analyzed by histology, DNA quantification, SEM, and renal angiography. Further, a small portion from the cortico-medullar region of the acellular scaffold was implanted in the rat's kidney subcapsular pocket for a period of 1 month, to check the recruitment of host cells into the scaffold. Post implantation, the extracellular matrix of the scaffold was well preserved and it did not induce any damage or inflammation in the native kidney. Implantation of the Xeno scaffold resulted in apparent early vascularization which helped in the recruitment of the host cells, which was characterized by histology, immunohistochemistry, and scanning electron microscopy. Implanted Xeno scaffold showed AQP-1, Nephrin, α-SMA, and VEGF expression in proximal tubules and renal glomerulus. Importantly, Ki-67 and WTAP-expressing cells were also observed near proximal tubules suggesting a high level of proliferation in the scaffold. Thus, showing the potential of Xeno kidney development that can be recellularized by the host cell to engineer into a functional kidney.
Collapse
Affiliation(s)
- Kishor Tardalkar
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Nilesh Bhamare
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Jeevitaa Kshersagar
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Leena Chaudhari
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Nimish Deshpande
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Jitendra Patil
- Department of Radiology, D Y Patil Medical College, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Rakesh Kumar Sharma
- Department of Obstetrics and Gynaecology, D Y Patil Medical College, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
- Stem Plus Biotech, SMK Commercial Complex, Sangli, Maharashtra, India
| |
Collapse
|
5
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
6
|
Singh J, Singh S. Review on kidney diseases: types, treatment and potential of stem cell therapy. RENAL REPLACEMENT THERAPY 2023; 9:21. [PMID: 37131920 PMCID: PMC10134709 DOI: 10.1186/s41100-023-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Renal disorders are an emerging global public health issue with a higher growth rate despite progress in supportive therapies. In order to find more promising treatments to stimulate renal repair, stem cell-based technology has been proposed as a potentially therapeutic option. The self-renewal and proliferative nature of stem cells raised the hope to fight against various diseases. Similarly, it opens a new path for the treatment and repair of damaged renal cells. This review focuses on the types of renal diseases; acute and chronic kidney disease-their statistical data, and the conventional drugs used for treatment. It includes the possible stem cell therapy mechanisms involved and outcomes recorded so far, the limitations of using these regenerative medicines, and the progressive improvement in stem cell therapy by adopting approaches like PiggyBac, Sleeping Beauty, and the Sendai virus. Specifically, about the paracrine activities of amniotic fluid stem cells, renal stem cells, embryonic stem cells, mesenchymal stem cell, induced pluripotent stem cells as well as other stem cells.
Collapse
Affiliation(s)
- Jaspreet Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| | - Sanjeev Singh
- School of Bioengineering & Biosciences, Lovely Professional University, 15935, Block 56, Room No 202, Phagwara, Punjab 144411 India
| |
Collapse
|
7
|
Dang BV, Taylor RA, Charlton AJ, Le-Clech P, Barber TJ. Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems. IEEE Rev Biomed Eng 2020; 13:261-279. [DOI: 10.1109/rbme.2019.2933339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Lee SJ, Wang HJ, Kim TH, Choi JS, Kulkarni G, Jackson JD, Atala A, Yoo JJ. In Situ Tissue Regeneration of Renal Tissue Induced by Collagen Hydrogel Injection. Stem Cells Transl Med 2019; 7:241-250. [PMID: 29380564 PMCID: PMC5788870 DOI: 10.1002/sctm.16-0361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Host stem/progenitor cells can be mobilized and recruited to a target location using biomaterials, and these cells may be used for in situ tissue regeneration. The objective of this study was to investigate whether host biologic resources could be used to regenerate renal tissue in situ. Collagen hydrogel was injected into the kidneys of normal mice, and rat kidneys that had sustained ischemia/reperfusion injury. After injection, the kidneys of both animal models were examined up to 4 weeks for host tissue response. The infiltrating host cells present within the injection regions expressed renal stem/progenitor cell markers, PAX‐2, CD24, and CD133, as well as mesenchymal stem cell marker, CD44. The regenerated renal structures were identified by immunohistochemistry for renal cell specific markers, including synaptopodin and CD31 for glomeruli and cytokeratin and neprilysin for tubules. Quantitatively, the number of glomeruli found in the injected regions was significantly higher when compared to normal regions of renal cortex. This phenomenon occurred in normal and ischemic injured kidneys. Furthermore, the renal function after ischemia/reperfusion injury was recovered after collagen hydrogel injection. These results demonstrate that introduction of biomaterials into the kidney is able to facilitate the regeneration of glomerular and tubular structures in normal and injured kidneys. Such an approach has the potential to become a simple and effective treatment for patients with renal failure. Stem Cells Translational Medicine2018;7:241–250
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hung-Jen Wang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University Collagen of Medicine, Kaohsiung City, Taiwan, Republic of China
| | - Tae-Hyoung Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Chung-Ang University Hospital, Seoul, South Korea
| | - Jin San Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gauri Kulkarni
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
9
|
Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater 2019; 95:328-336. [PMID: 30953799 DOI: 10.1016/j.actbio.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
We have developed a biomimetic renal vascular scaffold based on a vascular corrosion casting technique. This study evaluated the feasibility of using this novel biomimetic scaffold for kidney regeneration in a rat kidney cortical defect model. Vascular corrosion casts were prepared from normal rat kidneys by perfusion with 10% polycaprolactone (PCL) solution, followed by tissue digestion. The corrosion PCL cast was coated with collagen, and PCL was removed from within the collagen coating, leaving only a hollow collagen-based biomimetic vascular scaffold. The fabricated scaffolds were pre-vascularized with MS1 endothelial cell coating, incorporated into 3D renal constructs, and subsequently implanted either with or without human renal cells in the renal cortex of nude rats. The implanted collagen-based vascular scaffold was easily identified and integrated into native kidney tissue. The biomimetic vascular scaffold coated with endothelial cells (MS1) showed significantly enhanced vascularization, as compared to the uncoated scaffold and hydrogel only groups (P < 0.001). Along with the improved vascularization effects, the MS1-coated scaffolds showed a significant renal cell infiltration from the neighboring host tissue, as compared to the other groups (P < 0.05). Moreover, addition of human renal cells to the MS1-coated scaffold resulted in further enhancement of vascularization and tubular structure regeneration within the implanted constructs. The biomimetic collagen vascular scaffolds coated with endothelial cells are able to enhance vascularization and facilitate the formation of renal tubules after 14 days when combined with human renal cells. This study shows the feasibility of bioengineering vascularized functional renal tissues for kidney regeneration. STATEMENT OF SIGNIFICANCE: Vascularization is one of the major hurdles affecting the survival and integration of implanted three-dimensional tissue constructs in vivo. A novel, biomimetic, collagen-based vascular scaffold that is structurally identical to native kidney tissue was developed and tested. This biomimetic vascularized scaffold system facilitates the development of new vessels and renal cell viability in vivo when implanted in a partial renal defect. The use of this scaffold system could address the challenges associated with vascularization, and may be an ideal treatment strategy for partial augmentation of renal function in patients with chronic kidney disease.
Collapse
|
10
|
Abstract
The number of individuals affected by acute kidney injury (AKI) and chronic kidney disease (CKD) is constantly rising. In light of the limited availability of treatment options and their relative inefficacy, cell based therapeutic modalities have been studied. However, not many efforts are put into safety evaluation of such applications. The aim of this study was to review the existing published literature on adverse events reported in studies with genetically modified cells for treatment of kidney disease. A systematic review was conducted by searching PubMed and EMBASE for relevant articles published until June 2018. The search results were screened and relevant articles selected using pre-defined criteria, by two researchers independently. After initial screening of 6894 abstracts, a total number of 97 preclinical studies was finally included for full assessment. Of these, 61 (63%) presented an inappropriate study design for the evaluation of safety parameters. Only 4 studies (4%) had the optimal study design, while 32 (33%) showed sub-optimal study design with either direct or indirect evidence of adverse events. The high heterogeneity of studies included regarding cell type and number, genetic modification, administration route, and kidney disease model applied, combined with the consistent lack of appropriate control groups, makes a reliable safety evaluation of kidney cell-based therapies impossible. Only a limited number of relevant studies included looked into essential safety-related outcomes, such as inflammatory (48%), tumorigenic and teratogenic potential (12%), cell biodistribution (82%), microbiological safety with respect to microorganism contamination and latent viruses' reactivation (1%), as well as overall well-being and animal survival (19%). In conclusion, for benign cell-based therapies, well-designed pre-clinical studies, including all control groups required and good manufacturing processes securing safety, need to be done early in development. Preferably, this should be performed side by side with efficacy evaluation and according to the official guidelines of leading health organizations.
Collapse
|
11
|
Giatsidis G, Guyette JP, Ott HC, Orgill DP. Development of a large-volume human-derived adipose acellular allogenic flap by perfusion decellularization. Wound Repair Regen 2018; 26:245-250. [DOI: 10.1111/wrr.12631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Giorgio Giatsidis
- Tissue Engineering and Wound Healing Laboratory, Department of Surgery, Division of Plastic Surgery; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| | - Jacques P. Guyette
- Laboratory for Organ Engineering and Regeneration; Harvard Medical School-Harvard Stem Cell Institute; Boston Massachusetts
| | - Harald C. Ott
- Laboratory for Organ Engineering and Regeneration; Harvard Medical School-Harvard Stem Cell Institute; Boston Massachusetts
| | - Dennis P. Orgill
- Tissue Engineering and Wound Healing Laboratory, Department of Surgery, Division of Plastic Surgery; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
12
|
Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R, Benigni A, Remuzzi G. Experimental Evaluation of Kidney Regeneration by Organ Scaffold Recellularization. Sci Rep 2017; 7:43502. [PMID: 28266553 PMCID: PMC5339865 DOI: 10.1038/srep43502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
The rising number of patients needing renal replacement therapy, alongside the significant clinical and economic limitations of current therapies, creates an imperative need for new strategies to treat kidney diseases. Kidney bioengineering through the production of acellular scaffolds and recellularization with stem cells is one potential strategy. While protocols for obtaining organ scaffolds have been developed successfully, scaffold recellularization is more challenging. We evaluated the potential of in vivo and in vitro kidney scaffold recellularization procedures. Our results show that acellular scaffolds implanted in rats cannot be repopulated with host cells, and in vitro recellularization is necessary. However, we obtained very limited and inconsistent cell seeding when using different infusion protocols, regardless of injection site. We also obtained experimental and theoretical data indicating that uniform cell delivery into the kidney scaffolds cannot be obtained using these infusion protocols, due to the permeability of the extracellular matrix of the scaffold. Our results highlight the major physical barriers that limit in vitro recellularization of acellular kidney scaffolds and the obstacles that must be investigated to effectively advance this strategy for regenerative medicine.
Collapse
Affiliation(s)
- Andrea Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
- Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5 - 24044 Dalmine Bergamo, Italy
| | - Marina Figliuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Barbara Bonandrini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Sara Silvani
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Nadia Azzollini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Roberta Nossa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII Piazza OMS 1 – 24127 Bergamo, Italy
- Department of Biomedical and Clinical Sciences, University of Milano, Via Festa del Perdono 7 -20122 Milano, Italy
| |
Collapse
|
13
|
Poornejad N, Buckmiller E, Schaumann L, Wang H, Wisco J, Roeder B, Reynolds P, Cook A. Re-epithelialization of whole porcine kidneys with renal epithelial cells. J Tissue Eng 2017; 8:2041731417718809. [PMID: 28758007 PMCID: PMC5513523 DOI: 10.1177/2041731417718809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 01/16/2023] Open
Abstract
Decellularized porcine kidneys were recellularized with renal epithelial cells by three methods: perfusion through the vasculature under high pressure, perfusion through the ureter under high pressure, or perfusion through the ureter under moderate vacuum. Histology, scanning electron microscopy, confocal microscopy, and magnetic resonance imaging were used to assess vasculature preservation and the distribution of cells throughout the kidneys. Cells were detected in the magnetic resonance imaging by labeling them with iron oxide. Perfusion of cells through the ureter under moderate vacuum (40 mmHg) produced the most uniform distribution of cells throughout the kidneys.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Evan Buckmiller
- Department of Genetics and Biotechnology, Brigham Young University, Provo, UT, USA
| | - Lara Schaumann
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Haonan Wang
- Department of Electrical Engineering, Brigham Young University, Provo, UT, USA
| | - Jonathan Wisco
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Beverly Roeder
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Paul Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Alonzo Cook
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
14
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Heterogeneity of Scaffold Biomaterials in Tissue Engineering. MATERIALS 2016; 9:ma9050332. [PMID: 28773457 PMCID: PMC5503070 DOI: 10.3390/ma9050332] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Tissue engineering (TE) offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.
Collapse
|
16
|
Poornejad N, Schaumann LB, Buckmiller EM, Roeder BL, Cook AD. Current Cell-Based Strategies for Whole Kidney Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:358-370. [PMID: 26905375 DOI: 10.1089/ten.teb.2015.0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure. Unfortunately, the number of patients on the waiting list far exceeds the number of donors. In addition, recipients must remain on immunosuppressive medications for the remainder of their lives, which increases the risk of morbidity due to their weakened immune system. Despite recent advancements in whole organ transplantation, 40% of recipients will face rejection of implanted organs with a life expectancy of only 10 years. Bioengineered patient-specific kidneys could be an inexhaustible source of healthy kidneys without the risk of immune rejection. The purpose of this article is to review the pros and cons of several bioengineering strategies used in recent years and their unresolved issues. These strategies include repopulation of natural scaffolds with a patient's cells, de-novo generation of kidneys using patient-induced pluripotent stem cells combined with stepwise differentiation, and the creation of a patient's kidney in the embryos of other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Lara B Schaumann
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Evan M Buckmiller
- 2 Department of Genetics and Biotechnology, Brigham Young University , Provo, Utah
| | | | - Alonzo D Cook
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| |
Collapse
|
17
|
De Chiara L, Crean J. Emerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney. J Clin Med 2016; 5:jcm5010006. [PMID: 26771648 PMCID: PMC4730131 DOI: 10.3390/jcm5010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Notwithstanding controversies over the role of epithelial to mesenchymal transition in the pathogenesis of renal disease, the last decade has witnessed a revolution in our understanding of the regulation of renal cell plasticity. Significant parallels undoubtedly exist between ontogenic processes and the initiation and propagation of damage in the diseased kidney as evidenced by the reactivation of developmental programmes of gene expression, in particular with respect to TGFβ superfamily signaling. Indeed, multiple signaling pathways converge on a complex transcriptional regulatory nexus that additionally involves epigenetic activator and repressor mechanisms and microRNA regulatory networks that control renal cell plasticity. It is becoming increasingly apparent that differentiated cells can acquire an undifferentiated state akin to “stemness” which is leading us towards new models of complex cell behaviors and interactions. Here we discuss the latest findings that delineate new and novel interactions between this transcriptional regulatory network and highlight a hitherto poorly recognized role for the Polycomb Repressive Complex (PRC2) in the regulation of renal cell plasticity. A comprehensive understanding of how external stimuli interact with the epigenetic control of gene expression, in normal and diseased contexts, establishes a new therapeutic paradigm to promote the resolution of renal injury and regression of fibrosis.
Collapse
Affiliation(s)
- Letizia De Chiara
- Diabetes Complications Research Centre, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John Crean
- Diabetes Complications Research Centre, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Lin YQ, Wang LR, Pan LL, Wang H, Zhu GQ, Liu WY, Wang JT, Braddock M, Zheng MH. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease. Cytotherapy 2015; 18:186-97. [PMID: 26596504 DOI: 10.1016/j.jcyt.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering.
Collapse
Affiliation(s)
- Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Katari R, Edgar L, Wong T, Boey A, Mancone S, Igel D, Callese T, Voigt M, Tamburrini R, Zambon JP, Perin L, Orlando G. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 2015; 15:69. [PMID: 26275443 DOI: 10.1007/s11892-015-0643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.
Collapse
Affiliation(s)
- Ravi Katari
- Section of Transplantation, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, Soker S. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther 2015; 6:107. [PMID: 26028404 PMCID: PMC4450459 DOI: 10.1186/s13287-015-0089-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Irreversible end-stage organ failure represents one of the leading causes of death, and organ transplantation is currently the only curative solution. Donor organ shortage and adverse effects of immunosuppressive regimens are the major limiting factors for this definitive practice. Recent developments in bioengineering and regenerative medicine could provide a solid base for the future creation of implantable, bioengineered organs. Whole-organ detergent-perfusion protocols permit clinicians to gently remove all the cells and at the same time preserve the natural three-dimensional framework of the native organ. Several decellularized organs, including liver, kidney, and pancreas, have been created as a platform for further successful seeding. These scaffolds are composed of organ-specific extracellular matrix that contains growth factors important for cellular growth and function. Macro- and microvascular tree is entirely maintained and can be incorporated in the recipient's vascular system after the implant. This review will emphasize recent achievements in the whole-organ scaffolds and at the same time underline complications that the scientific community has to resolve before reaching a functional bioengineered organ.
Collapse
Affiliation(s)
- Andrea Peloso
- IRCCS Policlinico San Matteo, Department of General Surgery, University of Pavia, Viale Golgi 19, Pavia, 27100, Italy. .,Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Abritee Dhal
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Joao P Zambon
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Peng Li
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Department of General Surgery Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
21
|
Feng W, Dai Y, Mou L, Cooper DKC, Shi D, Cai Z. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. Int J Mol Sci 2015; 16:6545-56. [PMID: 25807262 PMCID: PMC4394547 DOI: 10.3390/ijms16036545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 12/26/2022] Open
Abstract
Clinical organ allotransplantation is limited by the availability of deceased human donors. However, the transplantation of human organs produced in other species would provide an unlimited number of organs. The pig has been identified as the most suitable source of organs for humans as organs of any size would be available. Genome editing by RNA-guided endonucleases, also known as clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), in combination with induced pluripotent stem cells (iPSC), may have the potential to enable the creation of human organs from genetically-modified chimaeric pigs. These could potentially provide an unlimited supply of organs that would not be rejected by the recipient's immune system. However, substantial research is needed to prove that this approach will work. Genetic modification of chimaeric pigs could also provide useful models for developing therapies for various human diseases, especially in relation to drug development.
Collapse
Affiliation(s)
- Wanyou Feng
- Shenzhen Key Laboratory of Xenotransplantaton, State and Local Joint Cancer Genome Clinical Application of Key Technology Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Mou
- Shenzhen Key Laboratory of Xenotransplantaton, State and Local Joint Cancer Genome Clinical Application of Key Technology Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Deshun Shi
- State Key Laboratory of Conservation & Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| | - Zhiming Cai
- Shenzhen Key Laboratory of Xenotransplantaton, State and Local Joint Cancer Genome Clinical Application of Key Technology Laboratory, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| |
Collapse
|
22
|
Scaffolds from surgically removed kidneys as a potential source of organ transplantation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:325029. [PMID: 25756044 PMCID: PMC4338377 DOI: 10.1155/2015/325029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 01/07/2023]
Abstract
End stage renal disease (ESRD) is a common disease, which relates to nearly 600 million people in the total population. What is more, it seems to be a crucial problem from the epidemiological point of view. These facts lead to a further necessity of renal replacement therapy development connected with rising expenditures for the health care system. The aim of kidney tissue engineering is to develop and innovate methods of obtaining renal extracellular matrix (ECM) scaffolds derived from kidney decellularization. Recently, progress has been made towards developing a functional kidney graft in vitro on demand. In fact, decellularized tissues constitute ideal natural scaffolds, due to the preservation of native ECM architecture, as well as of cell-ECM binding domains critical in promoting cell attachment, migration, and proliferation. One of the potential sources of the natural scaffolds is the kidney, which cannot be transplanted immediately after excision.
Collapse
|