1
|
Zhang S, Wang X, Liu S, Hu C, Meng Y. Phlorizin ameliorates cognitive and behavioral impairments via the microbiota-gut-brain axis in high-fat and high-fructose diet-induced obese male mice. Brain Behav Immun 2024; 123:193-210. [PMID: 39277023 DOI: 10.1016/j.bbi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024] Open
Abstract
The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. Phlorizin, a well-studied natural compound found in apples and other plants, is recognized for its bioactive properties, including modulation of glucose and lipid metabolism. Despite its established role in mitigating metabolic disorders, the neuroprotective effects of phlorizin, particularly against diabetes-related cognitive dysfunction, have not been fully elucidated. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. We found that dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Therefore, phlorizin shows promise as a potential nutritional therapy for addressing cognitive impairment associated with metabolic disorders. Further research is needed to explore its effectiveness in preventing and alleviating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuqing Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory for Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Shenlin Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chingyuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Yonghong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
2
|
Feng L, Jinhua W, Shulin G, Jiangping X, Zhongxiang L, Xiaohong L. Causal association between antidiabetic drugs and erectile dysfunction: evidence from Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1414958. [PMID: 39247921 PMCID: PMC11377246 DOI: 10.3389/fendo.2024.1414958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Antidiabetic drugs are widely used in clinical practice as essential drugs for the treatment of diabetes. The effect of hypoglycemic drugs on erectile dysfunction has not been fully proven due to the presence of multiple confounding factors. Methods Two-sample Mendelian randomization (TSMR) was used to examine the causal effect of antidiabetic drugs (including metformin, insulin and gliclazide) on erectile dysfunction. We used five robust analytic methods, of which the inverse variance weighting (IVW) method was the primary method, and also assessed factors such as sensitivity, pleiotropy, and heterogeneity. Effect statistics for exposures and outcomes were downloaded from publicly available data sets, including open Genome-Wide Association Studies (GWAS) and the UK Biobank (UKB). Results In some of the hypoglycemic drug use, there was a significant causal relationship between metformin use and erectile dysfunction [Beta: 4.9386; OR:1.396E+02 (95% CI:9.13-2135); p-value: 0.0004), suggesting that metformin increased the risk of erectile dysfunction development. Also, we saw that gliclazide use also increased the risk of erectile dysfunction [Beta: 11.7187; OR:0.0125 (95% CI:12.44-1.21E+09); P value: 0.0125). There was no significant causal relationship between insulin use and erectile dysfunction [Beta: 3.0730; OR:21.6071 (95% CI:0.24-1942.38); p-value: 0.1806).Leave-one-out, MR-Egger, and MR-PRESSO analyses produced consistent results. Conclusion The use of metformin and gliclazide have the potential to increase the risk of erectile dysfunction. There is no causal relationship between the use of insulin and erectile dysfunction.
Collapse
Affiliation(s)
- Lin Feng
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Wu Jinhua
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Guo Shulin
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xie Jiangping
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Liao Zhongxiang
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Liao Xiaohong
- Department of Andrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Cheng J, Liu D, Huang Y, Chen L, Li Y, Yang Z, Fu S, Hu G. Phlorizin Mitigates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating Gut Microbiota and Inhibiting Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16043-16056. [PMID: 37856155 DOI: 10.1021/acs.jafc.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Phlorizin (PHZ) is the main active component of apple peel and presents a potential application value. In the past few years, some reports have suggested that PHZ may have antioxidant and anti-inflammatory effects. Herein, we have attempted to assess the protective effects of PHZ on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggested that early intervention with PHZ (20, 40, and 80 mg/kg) significantly reduced the severity of DSS-induced colitis in mice, as presented by a longer colon, improved tight junction protein, decreased disease activity index, and attenuated inflammatory factors. Additionally, early intervention with + (20, 40, and 80 mg/kg) significantly inhibited ferroptosis by decreasing the surrogate ferroptosis marker levels (MDA and Iron Content). Additionally, PHZ (80 mg/kg) increased the diversity of intestinal flora in colitic mice by elevating the levels of beneficial bacteria (Lactobacillaceae and Muribaculaceae) and reducing the levels of harmful bacteria (Lachnospiraceae). This indirectly led to an increase in the amount of short-chain fatty acids. A fecal microbial transplantation (FMT) test was conducted to show that PHZ (80 mg/kg) ameliorated ulcerative colitis (UC) by regulating gut dysbiosis. In conclusion, early intervention with PHZ decreased DSS-induced colitis in mice by preserving their intestinal barrier and regulating their intestinal flora.
Collapse
Affiliation(s)
- Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yaping Huang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lisha Chen
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ying Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
da Silva OA, Duarte GP, Lahlou S. Maternal Hyperglycemia Induces Autonomic Dysfunction and Heart Failure in Older Adult Offspring. Exp Clin Endocrinol Diabetes 2023; 131:615-623. [PMID: 37758043 DOI: 10.1055/a-2159-6468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AIMS Offspring exposed to an adverse fetal environment, such as gestational diabetes, may manifest increased susceptibility to several chronic diseases later in life. In the present study, the cardiovascular function of three different ages of offspring from diabetic rats was evaluated. METHODS AND RESULTS Diabetes mellitus was induced in pregnant rats by a single dose of streptozotocin (50 mg/kg). The offspring from diabetic (OD) and control rats (OC) were evaluated at three different ages: 6, 12 or 18 months. In the corresponding OC groups, fasting glycemia, baseline mean arterial pressure, and sympathetic tonus increased in the OD rats at 12 (OD12) and 18 (OD18) months of age, while cardiac hypertrophy was observed in all OD groups. Cardiac function evaluation in vivo showed low left ventricular systolic pressure and+dP/dt in the OD18 rats, suggesting a systolic dysfunction. OD12 and OD18 groups showed high left ventricle end-diastolic pressure, suggesting a diastolic dysfunction. OD groups showed an age-related impairment of both baroreflex-mediated tachycardia and baroreflex-mediated bradycardia in OD12 and OD18 rats. In isolated hearts from OD18 rats, both inotropic and tachycardiac responses to increasing isoproterenol were significantly reduced compared to the corresponding OC group. CONCLUSION These results suggest that gestational diabetes triggers the onset of hyperglycemia hypertension with impaired baroreflex sensitivity and heart failure in older age of offspring, representing important risk factors for death. Therefore, ensuring optimal glycemic control in diabetic pregnancy is important and serves as a key to preventing cardiovascular disease in the offspring in their older age.
Collapse
Affiliation(s)
- Odair Alves da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Glória Pinto Duarte
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Saad Lahlou
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
5
|
Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractAlthough the western discovery of borojó [Alibertia patinoi Cuatrec. (Delprete & C.H.Perss.)] is as recent as 1948, its several traditional uses in gastronomy and medicine, and its fame as an aphrodisiac are long standing and strong: the “love juice” extracted from it is very appreciated in Colombia, Ecuador, and Panama. Its medicinal potential, though, is far wider. This literature review aims to summarize the knowledge about the fruit, its ethnomedical uses, its biological activity and phytochemical composition, to validate ethnomedical claims and to help envision future lines of research. Borojó extracts have confirmed antimicrobial and antioxidant, and potential anticancer activities, which can be at least partially explained by its phytochemical composition -compounds isolated and identified through Gas Chromatography, High Performance Liquid Chromatography and spectroscopic and spectrometric techniques- rich in phenolic compounds, some of which, for example oleuropein, chlorogenic acid and rutin, possess proven biological activity. There is potential for borojó products as a source of bioactive natural products, which have not been exhaustively identified despite phytochemical screenings that show the presence of unstudied compound families: terpenoids, alkaloids, steroids; and functional alimentary products. Although its aphrodisiac properties have not been confirmed, several compounds with confirmed aphrodisiac activity in other species, mainly flavonoids, are also found in borojó. These, coupled with its nutritional profile and perhaps compounds yet unidentified, could validate the claim.
Graphical abstract
Collapse
|
6
|
Cignarelli A, Genchi VA, D’Oria R, Giordano F, Caruso I, Perrini S, Natalicchio A, Laviola L, Giorgino F. Role of Glucose-Lowering Medications in Erectile Dysfunction. J Clin Med 2021; 10:jcm10112501. [PMID: 34198786 PMCID: PMC8201035 DOI: 10.3390/jcm10112501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Erectile dysfunction (ED) is a long-term complication of type 2 diabetes (T2D) widely known to affect the quality of life. Several aspects of altered metabolism in individuals with T2D may help to compromise the penile vasculature structure and functions, thus exacerbating the imbalance between smooth muscle contractility and relaxation. Among these, advanced glycation end-products and reactive oxygen species derived from a hyperglycaemic state are known to accelerate endothelial dysfunction by lowering nitric oxide bioavailability, the essential stimulus of relaxation. Although several studies have explained the pathogenetic mechanisms involved in the generation of erectile failure, few studies to date have described the efficacy of glucose-lowering medications in the restoration of normal sexual activity. Herein, we will present current knowledge about the main starters of the pathophysiology of diabetic ED and explore the role of different anti-diabetes therapies in the potential remission of ED, highlighting specific pathways whose activation or inhibition could be fundamental for sexual care in a diabetes setting.
Collapse
|
7
|
Jia Z, Xie Y, Wu H, Wang Z, Li A, Li Z, Yang Z, Zhang Z, Xing Z, Zhang X. Phlorizin from sweet tea inhibits the progress of esophageal cancer by antagonizing the JAK2/STAT3 signaling pathway. Oncol Rep 2021; 46:137. [PMID: 34036398 PMCID: PMC8165578 DOI: 10.3892/or.2021.8088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Phlorizin, an important member of the dihydrochalcone family, has been widely used as a Chinese Traditional Medicine for treatment of numerous diseases. The present study aimed to investigate the potential therapeutic effects of phlorizin on esophageal cancer. Phlorizin, extracted from sweet tea, was used to treat esophageal cancer cells. Cell proliferation, migration and invasion were determined using Cell Counting Kit-8 and colony formation assays, and wound healing and Transwell assays, respectively. RNA sequencing and bioinformatics analysis was used to investigate the potential mechanism of phlorizin in the development of esophageal cancer. Fluorescent staining and flow cytometry was used to measure the level of apoptosis. The expression level of the proteins, P62/SQSTM1 and LC3 І/II, and the effect of phlorizin on the JAK2/STAT3 signaling pathway was detected using western blot analysis. The results demonstrated that phlorizin could inhibit cell proliferation, migration and invasion. Bioinformatics analysis showed that phlorizin might be involved in pleiotropic effects, such as the ‘JAK/STAT signaling pathway’ (hsa04630), ‘MAPK signaling pathway’(hsa04010) and ‘apoptosis’ (hsa04210). It was also confirmed that phlorizin promoted apoptosis and inhibited autophagy in the esophageal cancer cells. Notably, phlorizin might inhibit the proteins in the JAK/STAT signaling pathway, which would affect cancer cells. Taken together, the present data showed that phlorizin inhibited the progression of esophageal cancer by antagonizing the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhenxian Jia
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hongjiao Wu
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhuo Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ze Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhenbang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zhi Zhang
- Department of Oncology, Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zhaobin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
8
|
The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int J Mol Sci 2021; 22:ijms22020962. [PMID: 33478062 PMCID: PMC7835879 DOI: 10.3390/ijms22020962] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
Phloridzin is an important phytochemical which was first isolated from the bark of apple trees. It is a member of the dihydrochalcones and mainly distributed in the plants of the Malus genus, therefore, the extraction method of phloridzin was similar to those of other phenolic substances. High-speed countercurrent chromatography (HSCCC), resin adsorption technology and preparative high-performance liquid chromatography (HPLC) were used to separate and purify phloridzin. Many studies showed that phloridzin had multiple pharmacological effects, such as antidiabetic, anti-inflammatory, antihyperglycaemic, anticancer and antibacterial activities. Besides, the physiological activities of phloridzin are cardioprotective, neuroprotective, hepatoprotective, immunomodulatory, antiobesity, antioxidant and so on. The present review summarizes the biosynthesis, distribution, extraction and bioavailability of the natural compound phloridzin and discusses its applications in food and medicine.
Collapse
|