1
|
Kulasegaran T, Oliveira N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr Treat Options Oncol 2024; 25:914-931. [PMID: 38913213 PMCID: PMC11236885 DOI: 10.1007/s11864-024-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
OPINION STATEMENT The management of metastatic castrate-resistant prostate cancer (mCRPC) has evolved in the past decade due to substantial advances in understanding the genomic landscape and biology underpinning this form of prostate cancer. The implementation of various therapeutic agents has improved overall survival but despite the promising advances in therapeutic options, mCRPC remains incurable. The focus of treatment should be not only to improve survival but also to preserve the patient's quality of life (QoL) and ameliorate cancer-related symptoms such as pain. The choice and sequence of therapy for mCRPC patients are complex and influenced by various factors, such as side effects, disease burden, treatment history, comorbidities, patient preference and, more recently, the presence of actionable genomic alterations or biomarkers. Docetaxel is the first-line treatment for chemo-naïve patients with good performance status and those who have yet to progress on docetaxel in the castration-sensitive setting. Novel androgen agents (NHAs), such as abiraterone and enzalutamide, are effective treatment options that are utilized as second-line options. These medications can be considered upfront in frail patients or patients who are NHA naïve. Current guidelines recommend genetic testing in mCRPC for mutations in DNA repair deficiency genes to inform treatment decisions, as for example in breast cancer gene mutation testing. Other potential biomarkers being investigated include phosphatase and tensin homologues and homologous recombination repair genes. Despite a growing number of studies incorporating biomarkers in their trial designs, to date, only olaparib in the PROFOUND study and lutetium-177 in the VISION trial have improved survival. This is an unmet need, and future trials should focus on biomarker-guided treatment strategies. The advent of novel noncytotoxic agents has enhanced targeted drug delivery and improved treatment responses with favourable toxicity profiling. Trials should continue to incorporate and report health-related QoL scores and functional assessments into their trial designs.
Collapse
Affiliation(s)
- Tivya Kulasegaran
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia.
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia.
| | - Niara Oliveira
- Mater Hospital Brisbane, Cancer Centre, Raymond Terrace, South Brisbane, QLD, 4104, Australia
- School of Clinical Medicine, Mater Clinical Unit, The University of Queensland, Brisbane, Queensland, Australia, Raymond Terrace, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
2
|
Saxena A, Andrews J, Bryce AH, Riaz IB. Optimal systemic therapy in men with low-volume prostate cancer. Curr Opin Urol 2024; 34:183-197. [PMID: 38445371 DOI: 10.1097/mou.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
PURPOSE OF REVIEW Low-volume prostate cancer is an established prognostic category of metastatic hormone-sensitive prostate cancer. However, the term is often loosely used to reflect the low burden of disease across different prostate cancer states. This review explores the definitions of low-volume prostate cancer, biology, and current evidence for treatment. We also explore future directions, including the impact of advanced imaging modalities, particularly prostate-specific membrane antigen (PSMA) positron emission tomography (PET) scans, on refining patient subgroups and treatment strategies for patients with low-volume prostate cancer. RECENT FINDINGS Recent investigations have attempted to redefine low-volume disease, incorporating factors beyond metastatic burden. Advanced imaging, especially PSMA PET, offers enhanced accuracy in detecting metastases, potentially challenging the conventional definition of low volume. The prognosis and treatment of low-volume prostate cancer may vary by the timing of metastatic presentation. Biomarker-directed consolidative therapy, metastases-directed therapy, and de-escalation of systemic therapies will be increasingly important, especially in patients with metachronous low-volume disease. SUMMARY In the absence of validated biomarkers, the management of low-volume prostate cancer as defined by CHAARTED criteria may be guided by the timing of metastatic presentation. For metachronous low-volume disease, we recommend novel hormonal therapy (NHT) doublets with or without consolidative metastasis-directed therapy (MDT), and for synchronous low-volume disease, NHT doublets with or without consolidative MDT and prostate-directed radiation. Docetaxel triplets may be a reasonable alternative in some patients with synchronous presentation. There is no clear role of docetaxel doublets in patients with low-volume disease. In the future, a small subset of low-volume diseases with oligometastases selected by genomics and advanced imaging like PSMA PET may achieve long-term remission with MDT with no systemic therapy.
Collapse
Affiliation(s)
| | | | - Alan Haruo Bryce
- Department of Oncology, City of Hope Cancer Center, Goodyear, Arizona, USA
| | | |
Collapse
|
3
|
Liu Y, Hatano K, Nonomura N. Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects. World J Mens Health 2024; 42:42.e45. [PMID: 38772530 DOI: 10.5534/wjmh.230386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 05/23/2024] Open
Abstract
Prostate cancer (PCa) is a major health concern that necessitates appropriate diagnostic approaches for timely intervention. This review critically evaluates the role of liquid biopsy techniques, focusing on blood- and urine-based biomarkers, in overcoming the limitations of conventional diagnostic methods. The 4Kscore test and Prostate Health Index have demonstrated efficacy in distinguishing PCa from benign conditions. Urinary biomarker tests such as PCa antigen 3, MyProstateScore, SelectMDx, and ExoDx Prostate IntelliScore test have revolutionized risk stratification and minimized unnecessary biopsies. Emerging biomarkers, including non-coding RNAs, circulating tumor DNA, and prostate-specific antigen (PSA) glycosylation, offer valuable insights into PCa biology, enabling personalized treatment strategies. Advancements in non-invasive liquid biomarkers for PCa diagnosis may facilitate the stratification of patients and avoid unnecessary biopsies, particularly when PSA is in the gray area of 4 to 10 ng/mL.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
4
|
Hatano K. Editorial Comment on "Association between antibiotic use and subsequent risk of prostate cancer: A retrospective cohort study in South Korea". Int J Urol 2024; 31:331-332. [PMID: 38214210 DOI: 10.1111/iju.15393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
5
|
Sugawara T, Nevedomskaya E, Heller S, Böhme A, Lesche R, von Ahsen O, Grünewald S, Nguyen HM, Corey E, Baumgart SJ, Georgi V, Pütter V, Fernández‐Montalván A, Vasta JD, Robers MB, Politz O, Mumberg D, Haendler B. Dual targeting of the androgen receptor and PI3K/AKT/mTOR pathways in prostate cancer models improves antitumor efficacy and promotes cell apoptosis. Mol Oncol 2024; 18:726-742. [PMID: 38225213 PMCID: PMC10920092 DOI: 10.1002/1878-0261.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.
Collapse
Affiliation(s)
- Tatsuo Sugawara
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | | | | | | | | | | | | | | | - Eva Corey
- Department of UrologyUniversity of WashingtonSeattleWAUSA
| | - Simon J. Baumgart
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Victoria Georgi
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Vera Pütter
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Amaury Fernández‐Montalván
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
| | | | | | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
- Present address:
Adcento ApSCopenhagenDenmark
| | - Bernard Haendler
- Bayer AG, Pharmaceuticals, Research & Early Development OncologyBerlinGermany
| |
Collapse
|
6
|
Agbetuyi-Tayo P, Gbadebo M, Rotimi OA, Rotimi SO. Advancements in Biomarkers of Prostate Cancer: A Review. Technol Cancer Res Treat 2024; 23:15330338241290029. [PMID: 39440372 PMCID: PMC11497500 DOI: 10.1177/15330338241290029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and deadly cancers among men, particularly affecting men of African descent and contributing significantly to cancer-related morbidity and mortality worldwide. The disease varies widely, from slow-developing forms to highly aggressive or potentially fatal variants. Accurate risk stratification is crucial for making therapeutic decisions and designing adequate clinical trials. This review assesses a broad spectrum of diagnostic and prognostic biomarkers, many of which are incorporated into clinical guidelines, including the Prostate Health Index (PHI), 4Kscore, STHLM3, PCA3, SelectMDx, ExoDx Prostate Intelliscore (EPI), and MiPS. It also highlights emerging biomarkers with preclinical support, such as urinary non-coding RNAs and DNA methylation patterns. Additionally, the review explores the role of tumor-associated microbiota in PCa, offering new insights into its potential contributions to disease understanding. By examining the latest advancements in PCa biomarkers, this review enhances understanding their roles in disease management.
Collapse
Affiliation(s)
- Praise Agbetuyi-Tayo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Mary Gbadebo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Oluwakemi A. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| |
Collapse
|
7
|
Kim JH, Yang HJ, Lee KW, Park JJ, Lee CH, Jeon YS, Kim JH, Park S, Song SJ, Lee JH, Moon A, Kim YH, Song YS. The Correlations between the Intensity of Histopathological Ubiquitin-Specific Protease 11 Staining and Progression of Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:1703. [PMID: 38139829 PMCID: PMC10747236 DOI: 10.3390/ph16121703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Hee Jo Yang
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Kwang Woo Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Jae Joon Park
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| | - Chang-Ho Lee
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Youn Soo Jeon
- Department of Urology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Jae Ho Kim
- Department of Urology, School of Medicine, Soonchunhyang University, Gumi 39371, Republic of Korea;
| | - Suyeon Park
- Department of Data Innovation, Soonchunhyang University Seoul Hospital, Seoul 04404, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Republic of Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Ahrim Moon
- Department of Pathology, School of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea
| | - Yon Hee Kim
- Department of Pathology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea
| | - Yun Seob Song
- Department of Urology, School of Medicine, Soonchunhyang University, Seoul 04404, Republic of Korea; (J.H.K.); (J.J.P.)
| |
Collapse
|
8
|
Hatano K, Nonomura N. Systemic Therapies for Metastatic Castration-Resistant Prostate Cancer: An Updated Review. World J Mens Health 2023; 41:769-784. [PMID: 36792090 PMCID: PMC10523115 DOI: 10.5534/wjmh.220200] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 02/01/2023] Open
Abstract
The introduction of novel therapeutic agents for advanced prostate cancer has led to a wide range of treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC). In the past decade, new treatment options for mCRPC, including abiraterone, enzalutamide, docetaxel, cabazitaxel, sipuleucel-T, radium-223, 177Lu-PSMA-617, and Olaparib, have demonstrated a survival benefit in phase 3 trials. Bone-modifying agents have become part of the overall treatment strategy for mCRPC, in which denosumab and zoledronic acid reduce skeletal-related events. Recently, androgen receptor-signaling inhibitors (ARSIs) and docetaxel have been used upfront against metastatic castration-sensitive prostate cancer. Further, triplet therapy with ARSI, docetaxel, and androgen deprivation therapy is emerging. However, cross-resistance may occur between these treatments, and the optimal treatment sequence must be considered. The sequential administration of ARSIs, such as abiraterone and enzalutamide, is associated with limited efficacy; however, cabazitaxel is effective for patients with mCRPC who were previously treated with docetaxel and had disease progression during treatment with ARSI. Radioligand therapy with 177Lu-PSMA-617 is a new effective class of therapy for patients with advanced PSMA-positive mCRPC. Tumors with gene alterations that affect homologous recombination repair, such as BRCA1 and BRCA2 alterations, are sensitive to poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors in mCRPC. This review sought to highlight recent advances in systemic therapy for mCRPC and strategies to support patient selection and treatment sequencing.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
9
|
Cursano MC, Giunta EF, Scarpi E, Casadei C, Virga A, Ulivi P, Bleve S, Brighi N, Ravaglia G, Pantano F, Conteduca V, Santini D, De Giorgi U. Impact of Somatic DNA Repair Mutations on the Clinical Outcomes of Bone Metastases from Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:12436. [PMID: 37569810 PMCID: PMC10419855 DOI: 10.3390/ijms241512436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Up to 80% of castration-resistant prostate cancer (CRPC) patients develop bone metastases during the natural history of disease and about 25% harbor mutations in DNA damage repair (DDR) genes. This retrospective observational study evaluated the prevalence of DDR alterations in CRPC patients and their effect on the clinical outcomes associated with bone metastases. The mutational status of CRPC patients was analyzed per FoundationOne® analysis in tissue biopsy or, when it was not possible, in liquid biopsy performed at the onset of metastatic CRPC (mCRPC). The impact of DDR gene mutations on bone-related efficacy endpoints was evaluated at the time of mCRPC diagnoses. In total, 121 mCRPC patients with bone metastases were included: 38 patients had mutations in at least one DDR gene, the remaining 83 ones had a non-mutated DDR status. DDR mutated status was associated with bone metastases volume (p = 0.006), but did not affect SRE (skeletal-related events) incidence and time to SRE onset. Liquid and tissue biopsies were both available for 61 patients with no statistically significant difference in terms of incidence and type of molecular DDR alterations. Mutated DDR status was associated with higher bone metastasic volume, although a not detrimental effect on the other bone-related efficacy endpoints was observed.
Collapse
Affiliation(s)
- Maria Concetta Cursano
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| | - Emilio Francesco Giunta
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.S.); (G.R.)
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| | - Alessandra Virga
- Biosciences Laboratory, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Sara Bleve
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| | - Nicole Brighi
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.S.); (G.R.)
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy;
| | - Daniele Santini
- Medical Oncology Department, “La Sapienza” University of Rome, 00185 Rome, Italy;
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST S.r.l., 47014 Meldola, Italy; (E.F.G.); (C.C.); (S.B.); (N.B.); (U.D.G.)
| |
Collapse
|
10
|
Lukashchuk N, Barnicle A, Adelman CA, Armenia J, Kang J, Barrett JC, Harrington EA. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 2023; 13:1162644. [PMID: 37434977 PMCID: PMC10331135 DOI: 10.3389/fonc.2023.1162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients. One of the pathways often altered in advanced prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2 and other homologous recombination repair (HRR) genes. Alterations in the DDR pathway are particularly prevalent in metastatic prostate cancer. In this review, we summarise the prevalence of DDR alterations in primary and advanced prostate cancer and discuss the impact of alterations in the DDR pathway on aggressive disease phenotype, prognosis and the association of germline pathogenic alterations in DDR genes with risk of developing prostate cancer.
Collapse
Affiliation(s)
- Natalia Lukashchuk
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Alan Barnicle
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Carrie A. Adelman
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Oncology Data Science, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Jinyu Kang
- Global Medicines Development, Oncology Research and Development (R&D), AstraZeneca, Gaithersburg, MD, United States
| | - J. Carl Barrett
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Waltham, MA, United States
| | - Elizabeth A. Harrington
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
11
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
12
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
13
|
Idarubicin combats abiraterone and enzalutamide resistance in prostate cells via targeting XPA protein. Cell Death Dis 2022; 13:1034. [PMID: 36509750 PMCID: PMC9744908 DOI: 10.1038/s41419-022-05490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Although second-generation therapies like abiraterone (ABI) and enzalutamide (ENZ) benefit patients with castration-resistant prostate cancer (CRPC), drug resistance frequently occurs, eventually resulting in therapy failure. In this study, we used two libraries, FDA-approved drug library and CRISP/Cas9 knockout (GeCKO) library to screen for drugs that overcome treatment resistance and to identify the potential drug-resistant genes involved in treatment resistance. Our screening results showed that the DNA-damaging agent idarubicin (IDA) overcame abiraterone and enzalutamide resistance in prostate cancer cells. IDA treatment inhibited the DNA repair protein XPA expression in a transcription-independent manner. Consistently, XPA knockout sensitized prostate cancer cells to abiraterone and enzalutamide treatment. In conclusion, IDA combats abiraterone and enzalutamide resistance by reducing XPA protein level in prostate cancer.
Collapse
|
14
|
Šamija I, Fröbe A. GENOMICS OF PROSTATE CANCER: CLINICAL UTILITY AND CHALLENGES. Acta Clin Croat 2022; 61:86. [PMID: 36938554 PMCID: PMC10022402 DOI: 10.20471/acc.2022.61.s3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The studying of prostate cancer genomics is important for understanding prostate cancer biology, it can provide clinically relevant stratification into subtypes, the development of new prognostic and predictive markers in the context of precision medicine, and the development of new targeted therapies. Recent studies have provided detailed insight into genomics, epigenomics and proteomics of prostate cancer, both primary and metastatic castration-resistant (mCRPC). Many mutations have been discovered, both those that occur early in the carcinogenesis and progression as well as those responsible for the resistance to therapy occurring later under the influence of treatment. A large number of characteristic mutated signaling pathways has been identified, e.g. the mutations in DNA repair pathway were found in 23% of mCRPC, which suggests potential response to PARP inhibitors. Multifocality and intralesional genomic heterogeneity of prostate cancer make the clinical application of genomics complicated. Although a great progress was made in understanding prostate cancer genomic, and clinical studies related to its routine application are ongoing, prostate cancer genomics still needs to find its standard wide routine application in patients with prostate cancer.
Collapse
Affiliation(s)
- Ivan Šamija
- Department of Oncology and Nuclear Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Immunology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Ultra-Hypofractionated Stereotactic Body Radiotherapy for Localized Prostate Cancer: Clinical Outcomes, Patterns of Recurrence, Feasibility of Definitive Salvage Treatment, and Competing Oncological Risk. Biomedicines 2022; 10:biomedicines10102446. [PMID: 36289708 PMCID: PMC9598896 DOI: 10.3390/biomedicines10102446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
A cohort of 650 patients treated for localized prostate cancer (PCa) with CyberKnifeTM ultra-hypofractionated radiotherapy between 2011 and 2018 was retrospectively analyzed in terms of survival, patterns of failure, and outcomes of second-line definitive salvage therapies. The analysis was performed using survival analysis including the Kaplan-Meier method and Cox regression analysis. At a median follow-up of 49.4 months, the main pattern of failure was local-regional failure (7.4% in low-, and 13% in intermediate/high-risk group at five years), followed by distant metastases (3.6% in low-, and 6% in intermediate/high-risk group at five years). Five-year likelihood of developing a second malignancy was 7.3%; however, in the vast majority of the cases, the association with prior irradiation was unlikely. The 5-year overall survival was 90.2% in low-, and 88.8% in intermediate/high-risk patients. The independent prognostic factors for survival included age (HR 1.1; 95% CI 1.07-1.14) and occurrence of a second malignancy (HR 3.67; 95% CI 2.19-6.15). Definitive local salvage therapies were feasible in the majority of the patients with local-regional failure, and uncommonly in patients with distant metastases, with an estimated second-line progression free survival of 67.8% at two years. Competing oncological risks and age were significantly more important for patients' survival compared to primary disease recurrence.
Collapse
|
16
|
Stamatelatou A, Scheenen TWJ, Heerschap A. Developments in proton MR spectroscopic imaging of prostate cancer. MAGMA (NEW YORK, N.Y.) 2022; 35:645-665. [PMID: 35445307 PMCID: PMC9363347 DOI: 10.1007/s10334-022-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 10/25/2022]
Abstract
In this paper, we review the developments of 1H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of 1H MRSI without water signal suppression. These may enable a new evaluation of the complementary role and significance of MRSI in prostate cancer management.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Tom W J Scheenen
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging (766), Radboud University Medical Center Nijmegen, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
17
|
A 25-gene panel predicting the benefits of immunotherapy in head and neck squamous cell carcinoma. Int Immunopharmacol 2022; 110:108846. [PMID: 35816946 DOI: 10.1016/j.intimp.2022.108846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/17/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Tumor mutation burden high (TMB-H) is widely used in the guidance of immune checkpoint blocking (ICB) therapy for head and neck squamous cell carcinoma (HNSCC) patients. However, a few patients still had a poor response. Therefore, it is necessary to investigate a better model to guide ICB therapy. We constructed a genomic mutation model conducive to ICB therapy using an available HNSCC dataset. Moreover, treatment procedures for patients with HNSCC from our internal cohort confirmed this model. Here, a genomic mutation signature based on a list of 25 candidate genes that are favorable for immunotherapy was established. Patients with combined mutation had a respectable clinical outcome under ICB treatment. Notably, compared with patients who obtained TMB-H (TMB ≥ 10, but did not have combined mutation), those patients with TMB-L (TMB < 10) and combined mutation acquired remarkably beneficial overall survival. Moreover, the combined mutation signature predicting the survival status of patients was superior to TMB, with a Youden index of 0.55. Furthermore, higher immune cell infiltration levels, more active cancer-immunity cycle activities and immune response pathways were observed in patients with combined mutation. Finally, our internal cohort further confirmed that combined mutated patients can benefit from ICB therapy rather than any other patients.
Collapse
|
18
|
Mezher MA, Altamimi A, Altamimi R. An enhanced Genetic Folding algorithm for prostate and breast cancer detection. PeerJ Comput Sci 2022; 8:e1015. [PMID: 35875638 PMCID: PMC9299265 DOI: 10.7717/peerj-cs.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Cancer's genomic complexity is gradually increasing as we learn more about it. Genomic classification of various cancers is crucial in providing oncologists with vital information for targeted therapy. Thus, it becomes more pertinent to address issues of patient genomic classification. Prostate cancer is a cancer subtype that exhibits extreme heterogeneity. Prostate cancer contributes to 7.3% of new cancer cases worldwide, with a high prevalence in males. Breast cancer is the most common type of cancer in women and the second most significant cause of death from cancer in women. Breast cancer is caused by abnormal cell growth in the breast tissue, generally referred to as a tumour. Tumours are not synonymous with cancer; they can be benign (noncancerous), pre-malignant (pre-cancerous), or malignant (cancerous). Fine-needle aspiration (FNA) tests are used to biopsy the breast to diagnose breast cancer. Artificial Intelligence (AI) and machine learning (ML) models are used to diagnose with varying accuracy. In light of this, we used the Genetic Folding (GF) algorithm to predict prostate cancer status in a given dataset. An accuracy of 96% was obtained, thus being the current highest accuracy in prostate cancer diagnosis. The model was also used in breast cancer classification with a proposed pipeline that used exploratory data analysis (EDA), label encoding, feature standardization, feature decomposition, log transformation, detect and remove the outliers with Z-score, and the BAGGINGSVM approach attained a 95.96% accuracy. The accuracy of this model was then assessed using the rate of change of PSA, age, BMI, and filtration by race. We discovered that integrating the rate of change of PSA and age in our model raised the model's area under the curve (AUC) by 6.8%, whereas BMI and race had no effect. As for breast cancer classification, no features were removed.
Collapse
Affiliation(s)
| | - Almothana Altamimi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico, di Napoli Federico, Italy
| | - Ruhaifa Altamimi
- Department of Business and Data Analytics, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
19
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
20
|
Personalized 3-Gene Panel for Prostate Cancer Target Therapy. Curr Issues Mol Biol 2022; 44:360-382. [PMID: 35723406 PMCID: PMC8929157 DOI: 10.3390/cimb44010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Many years and billions spent for research did not yet produce an effective answer to prostate cancer (PCa). Not only each human, but even each cancer nodule in the same tumor, has unique transcriptome topology. The differences go beyond the expression level to the expression control and networking of individual genes. The unrepeatable heterogeneous transcriptomic organization among men makes the quest for universal biomarkers and “fit-for-all” treatments unrealistic. We present a bioinformatics procedure to identify each patient’s unique triplet of PCa Gene Master Regulators (GMRs) and predict consequences of their experimental manipulation. The procedure is based on the Genomic Fabric Paradigm (GFP), which characterizes each individual gene by the independent expression level, expression variability and expression coordination with each other gene. GFP can identify the GMRs whose controlled alteration would selectively kill the cancer cells with little consequence on the normal tissue. The method was applied to microarray data on surgically removed prostates from two men with metastatic PCas (each with three distinct cancer nodules), and DU145 and LNCaP PCa cell lines. The applications verified that each PCa case is unique and predicted the consequences of the GMRs’ manipulation. The predictions are theoretical and need further experimental validation.
Collapse
|