1
|
Marquez VE. 3-Deazaneplanocin A (DZNep): A Drug That Deserves a Second Look. J Med Chem 2024; 67:17964-17979. [PMID: 39392180 DOI: 10.1021/acs.jmedchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emerging data compiled during the past five years on 3-deazaneplanocin (DZNep) provide compelling evidence to reevaluate this drug as a better alternative over the specific catalytic inhibitors of histone methyl transferases (HTMs). The indirect mechanism of DZNep via inhibition of AdoHcy-ase, once considered a liability due to possible side effects, has now shown to be rather beneficial as additional pathways targeted by DZNep are important contributors to its superior anticancer properties. Furthermore, DZNep has demonstrated the ability to induce proteasomal degradation of its target and reduce toxicity in combination with well-established antitumor therapies in animal models. In addition, DZNep has shown important effects in suppressing fibrosis and inflammation in liver, kidney, peritoneum, and airways. Finally, inhibition of mRNA m6A methylation by DZNep suppresses the synthesis of the viral genome in SARS-Cov-2 infection and promises to have important therapeutic value when combined with its potent antiviral efficacy and anti-inflammatory effects.
Collapse
Affiliation(s)
- Victor E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
2
|
Deng Q, Chen L, Zhang G, Liu L, Luo SM, Gao X. TRIAL-based combination therapies in cancers. Int Immunopharmacol 2024; 138:112570. [PMID: 38971105 DOI: 10.1016/j.intimp.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.
Collapse
Affiliation(s)
- Qiumin Deng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Fujiike AY, de Oliveira LCB, Ribeiro DL, Pereira ÉR, Okuyama NCM, Dos Santos AGP, de Syllos Cólus IM, Serpeloni JM. Effects of docetaxel on metastatic prostate (DU-145) carcinoma cells cultured as 2D monolayers and 3D multicellular tumor spheroids. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:227-244. [PMID: 38095149 DOI: 10.1080/15287394.2023.2293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Docetaxel (DTX) is one of the chemotherapeutic drugs indicated as a first-line treatment against metastatic prostate cancer (mPCa). This study aimed to compare the impact of DTX on mPCa (DU-145) tumor cells cultured as 2D monolayers and 3D multicellular tumor spheroids (MCTS) in vitro. The cells were treated with DTX (1-96 µM) at 24, 48, or 72 hr in cell viability assays (resazurin, phosphatase acid, and lactate dehydrogenase). Cell death was assessed with fluorescent markers and proliferation by clonogenic assay (2D) and morphology, volume, and integrity assay (3D). The cell invasion was determined using transwell (2D) and extracellular matrix (ECM) (3D). Results showed that DTX decreased cell viability in both culture models. In 2D, the IC50 (72 hr) values were 11.06 μM and 14.23 μM for resazurin and phosphatase assays, respectively. In MCTS, the IC50 values for the same assays were 114.9 μM and 163.7 μM, approximately 10-fold higher than in the 2D model. The % of viable cells decreased, while the apoptotic cell number was elevated compared to the control in 2D. In 3D spheroids, only DTX 24 μM induced apoptosis. DTX (≥24 μM at 216 hr) lowered the volume, and DTX 96 μM completely disintegrated the MCTS. DTX reduced the invasion of mPCa cells to matrigel (2D) and migration from MCTS to the ECM. Data demonstrated significant differences in drug response between 2D and 3D cell culture models using mPCa DU-145 tumor cells. MCTS resembles the early stages of solid tumors in vivo and needs to be considered in conjunction with 2D cultures when searching for new therapeutic targets.
Collapse
Affiliation(s)
- Andressa Yuri Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Larissa Cristina Bastos de Oliveira
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Diego Luis Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
4
|
Runge R, Naumann A, Miederer M, Kotzerke J, Brogsitter C. Up-Regulation of PSMA Expression In Vitro as Potential Application in Prostate Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:ph16040538. [PMID: 37111295 PMCID: PMC10144194 DOI: 10.3390/ph16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Possibilities to improve the therapeutic efficacy of Lu-177-PSMA-617 radionuclide therapy by modulation of target expression are being investigated. Knowledge on regulatory factors that promote prostate cancer (PCa) progression may contribute to targeting prostate cancer more effectively. We aimed at the stimulation of PCa cell lines using the substances 5-aza-2'-deoxycitidine (5-aza-dC) and valproic acid (VPA) to achieve increased prostate-specific membrane antigen (PSMA) expression. PC3, PC3-PSMA, and LNCaP cells were incubated with varying concentrations of 5-aza-dC and VPA to investigate the cell-bound activity of Lu-177-PSMA-617. Stimulation effects on both the genetically modified cell line PC3-PSMA and the endogenously PSMA-expressing LNCaP cells were demonstrated by increased cellular uptake of the radioligand. For PC3-PSMA cells, the fraction of cell-bound radioactivity was enhanced by about 20-fold compared to that of the unstimulated cells. Our study reveals an increased radioligand uptake mediated by stimulation for both PC3-PSMA and LNCaP cell lines. In perspective of an enhanced PSMA expression, the present study might contribute to advanced radionuclide therapy approaches that improve the therapeutic efficacy, as well as combined treatment options.
Collapse
Affiliation(s)
- Roswitha Runge
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Anne Naumann
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Joerg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|