1
|
Zhang X, Zhou Y, Ye Y, Wu R, Li W, Yao C, Wang S. Human umbilical cord mesenchymal stem cell-derived exosomal microRNA-148a-3p inhibits neointimal hyperplasia by targeting Serpine1. Arch Biochem Biophys 2022; 719:109155. [PMID: 35218720 DOI: 10.1016/j.abb.2022.109155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Restenosis is inevitable when patients undergo percutaneous transluminal angioplasty due to neointimal hyperplasia (NIH). Human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exos) have been studied in the field of cardiovascular diseases. However, the effects and mechanisms of hucMSC-Exos on NIH are unclear. We aimed to investigate whether MSC-Exos regulate vascular smooth muscle cell (VSMC) functions to inhibit NIH and explore the underlying mechanisms. METHODS HucMSCs and mouse VSMCs were isolated and characterized by flow cytometry and immunofluorescence. HucMSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis and western blots. Exosomes (Exos) were intravenously injected into mice with left common carotid artery ligation, and their effects on NIH were assessed by haematoxylin and eosin (H&E) and immunohistochemistry staining. The effects of hucMSC-Exos on VSMCs were evaluated by Cell Counting Kit-8, scratch wound, Transwell and Western blot assays. MicroRNA sequencing data in the Gene Expression Omnibus and mRNA sequencing results were used to identify potential molecules in hucMSC-Exos and target genes in VSMCs, respectively. We tested the regulatory effect of microRNAs in Exos and target genes in VSMCs using overexpression and knockdown experiments. RESULTS Primary hucMSCs, VSMCs and hucMSC-Exos were isolated and characterized. Administration of hucMSC-Exos suppressed NIH after artery ligation. H&E and immunohistochemistry results showed that hucMSC-Exos decreased the intima and media area and intima/media ratio, increased the contractile phenotype protein SM22a in the media layer and downregulated Serpine1 expression in the carotid artery. Exos were ingested by VSMCs, which inhibited migration and upregulated SM22a expression by suppressing Serpine1 expression in vitro. MiR-148a-3p was enriched in hucMSC-Exos and repressed Serpine1 by targeting its 3' untranslated region. Moreover, exosomal miR-148a-3p suppressed VSMC phenotypic switching and migration by targeting Serpine1. CONCLUSIONS We found that hucMSC-Exos inhibited NIH in a mouse carotid artery ligation model and that the inhibitory effects on VSMC phenotypic switching and migration were mediated by delivery of miR-148a-3p to VSMCs to target Serpine1.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanchen Ye
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. Biodistribution studies for cell therapy products: Current status and issues. Regen Ther 2021; 18:202-216. [PMID: 34307798 PMCID: PMC8282960 DOI: 10.1016/j.reth.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Information on the biodistribution (BD) of cell therapy products (CTPs) is essential for prediction and assessment of their efficacy and toxicity profiles in non-clinical and clinical studies. To conduct BD studies, it is necessary to understand regulatory requirements, implementation status, and analytical methods. This review aimed at surveying international and Japanese trends concerning the BD study for CTPs and the following subjects were investigated, which were considered particularly important: 1) comparison of guidelines to understand the regulatory status of BD studies in a global setting; 2) case studies of the BD study using databases to understand its current status in cell therapy; 3) case studies on quantitative polymerase chain reaction (qPCR) used primarily in non-clinical BD studies for CTPs; and 4) survey of imaging methods used for non-clinical and clinical BD studies. The results in this review will be a useful resource for implementing BD studies.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yoichi Naritomi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yuu Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Tsukasa Kitahashi
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Toshihiko Maekawa
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo.Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Kagoshima, Japan
| | - Akari Noumaru
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Tomoaki Higuchi
- Non-clinical Development, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Komatsu
- Science BD Department, CMIC Pharma Science Co., Ltd., 1-1-1 Shibaura, Minato-ku, Tokyo, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Sadaaki Kimura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Umeda
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Eriko Fujita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Naoko Tanaka
- Evaluation Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Taku Sugita
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Satoru Takayama
- Cell Therapy Technology, Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji-Shi, Shizuoka, Japan
| | - Akihiko Kurogi
- Regenerative Medicine Research & Planning Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Stevens HY, Bowles AC, Yeago C, Roy K. Molecular Crosstalk Between Macrophages and Mesenchymal Stromal Cells. Front Cell Dev Biol 2020; 8:600160. [PMID: 33363157 PMCID: PMC7755599 DOI: 10.3389/fcell.2020.600160] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for regenerative medicine applications, from treating various inflammatory diseases as a cell therapy to generating engineered tissue constructs. Numerous studies have evaluated the potential effects of MSCs following therapeutic administration. By responding to their surrounding microenvironment, MSCs may mediate immunomodulatory effects through various mechanisms that directly (i.e., contact-dependent) or indirectly (i.e., paracrine activity) alter the physiology of endogenous cells in various disease pathologies. More specifically, a pivotal crosstalk between MSCs and tissue-resident macrophages and monocytes (TMφ) has been elucidated using in vitro and in vivo preclinical studies. An improved understanding of this crosstalk could help elucidate potential mechanisms of action (MOAs) of therapeutically administered MSCs. TMφ, by nature of their remarkable functional plasticity and prevalence within the body, are uniquely positioned as critical modulators of the immune system - not only in maintaining homeostasis but also during pathogenesis. This has prompted further exploration into the cellular and molecular alterations to TMφ mediated by MSCs. In vitro assays and in vivo preclinical trials have identified key interactions mediated by MSCs that polarize the responses of TMφ from a pro-inflammatory (i.e., classical activation) to a more anti-inflammatory/reparative (i.e., alternative activation) phenotype and function. In this review, we describe physiological and pathological TMφ functions in response to various stimuli and discuss the evidence that suggest specific mechanisms through which MSCs may modulate TMφ phenotypes and functions, including paracrine interactions (e.g., secretome and extracellular vesicles), nanotube-mediated intercellular exchange, bioenergetics, and engulfment by macrophages. Continued efforts to elucidate this pivotal crosstalk may offer an improved understanding of the immunomodulatory capacity of MSCs and inform the development and testing of potential MOAs to support the therapeutic use of MSCs and MSC-derived products in various diseases.
Collapse
Affiliation(s)
- Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annie C. Bowles
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA, United States
| | - Krishnendu Roy
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- NSF Engineering Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Center for ImmunoEngineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
4
|
Zurmukhtashvili M, Machavariani A, Dugashvili G, Grdzelidze T, Gogilashvili K, Menabde G, Abiatari I, Marks L. Mesenchymal stem cell transplantation attenuates growth of chemotherapy treated oral squamous cell carcinoma in an animal model. J Oral Pathol Med 2020; 49:655-664. [PMID: 32107794 DOI: 10.1111/jop.13006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have demonstrated mesenchymal stem cell migration toward tumor locations. When applied locally, MSCs interact with the locally residing host cells. The mechanisms behind this are still unclear. We aimed to detect the possible action mechanisms of MSCs on the in vivo growth of primary human oral squamous cell carcinoma. METHODS In mouse model of OSSC, chemotherapy with Cisplatin was done beginning from 9 day of tumor visualization. 3 weeks after tumor cell injection cultivated MSCs were administrated in tail vein or directly intra-tumorally. Animals underwent surveillance and afterward were sacrificed. Tumor growth was measured. MSCs biodistribution was assessed with bioluminescent analysis. Tumor tissues were tested morphologically and immunohistochemically for angiogenesis, hypoxia status, and cell apoptosis. RESULTS In the group treated with Cisplatin in combination with mesenchymal stem cell injection, the average size of the tumor was 98.9 ± 7.65 mm3 . In the experimental group, tumor tissues were less outlined and the presence of necrotic areas and connective tissue basal layers was detected. Immunohistochemical surveys with CD31 and anti-carbonic anhydrase 9 demonstrated strongly developed micro-vessel structures and small isles of hypoxia in the tumor tissues. TUNEL assay revealed in the same group that tumor tissues were mostly comprised of apoptotic cells. Viable cell communities presented as small isles. CONCLUSION The study demonstrates that intra-tumorally injected MSCs, combined with Cisplatin, leads to a minimal hypoxia status and increased apoptotic activity in tumor tissues, compared with the control group. This finding can be explained with better distribution of Cisplatin due to increased angiogenesis.
Collapse
Affiliation(s)
- Marika Zurmukhtashvili
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia.,Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | - Giorgi Dugashvili
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia.,Oral Health in Special Needs, Gent University Hospital, Gent, Belgium
| | | | | | - Giorgi Menabde
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Ivane Abiatari
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Luc Marks
- Oral Health in Special Needs, Gent University Hospital, Gent, Belgium.,Paediatric and Preventive Dentistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Wei X, Sun G, Zhao X, Wu Q, Chen L, Xu Y, Pang X, Qi G. Human amnion mesenchymal stem cells attenuate atherosclerosis by modulating macrophage function to reduce immune response. Int J Mol Med 2019; 44:1425-1435. [PMID: 31364743 PMCID: PMC6713407 DOI: 10.3892/ijmm.2019.4286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) show immunosuppressive activities and alleviate atherosclerosis (AS) formation in apolipoprotein E-knockout (apoE-KO) mice. Human amnion mesenchymal stem cells (hAMSCs), a particular population of mesenchymal stem cells, have been shown to have immunomodulatory abilities. The present study investigated the effects of hAMSCs treatment on early atherosclerotic plaque formation and the progression of established lesion in apoE-KO mice. In total, 36 mice were fed with a high-fat diet. Mice were subjected to hAMSCs-injection treatment simultaneously with high-fat diet (early treatment) or after 8 weeks of high-fat diet (delayed treatment). In each treatment, mice were divided into three groups: i) hAMSCs group with hAMSCs treatment; ii) PBS group injected with PBS; and iii) control group without injection. Histological results showed that the plaque area in the aortic arch of mice was significantly reduced after hAMSCs treatment in the early and delayed treatment groups. In addition, immunohistochemical analysis suggested that the accumulation of macrophages was significantly decreased after hAMSCs treatment. Similarly, the release of the pro-inflammatory cytokine tumor necrosis factor-α was also decreased, whereas the release of the anti-inflammatory cytokine interleukin-10 was increased. In addition, hAMSCs treatment suppressed the phosphorylation of p65 and inhibitor of κB-α, suggesting that NF-κB pathway was involved in the hAMSCs-mediated suppression of immune response. In conclusion, hAMSCs treatment was effective in reducing immune response, which is the one of the major causes of AS, eventually leading to a significant reduction in size of athero-sclerotic lesions.
Collapse
Affiliation(s)
- Xiufang Wei
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Sun
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxue Zhao
- Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Qianqian Wu
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Chen
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yichi Xu
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, National Health Commission of China and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guoxian Qi
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Wang D, Gao B, Yue J, Liu F, Liu Y, Fu W, Si Y. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med 2018; 23:1528-1540. [PMID: 30484954 PMCID: PMC6349157 DOI: 10.1111/jcmm.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome-mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC-derived exosomes (MSC-Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon-induced vascular injury. Our results showed that MSC-Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR-125b was enriched in MSC-Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3' untranslated region. Additionally, MSC-Exo and exosomally transferred miR-125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC-Exo can transfer miR-125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR-125b may be a therapeutic target in the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dongqing Wang
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Endovascular Surgery, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Bin Gao
- Department of Vascular Surgery, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Fei Liu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Liu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
7
|
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev Rep 2018; 14:484-499. [DOI: 10.1007/s12015-018-9817-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Transplantation of Bone Marrow Mesenchymal Stem Cells Prevents Radiation-Induced Artery Injury by Suppressing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5942916. [PMID: 29682160 PMCID: PMC5851295 DOI: 10.1155/2018/5942916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 12/16/2017] [Indexed: 12/26/2022]
Abstract
The present study aims to explore the protective effect of human bone marrow mesenchymal stem cells (hBMSCs) on radiation-induced aortic injury (RIAI). hBMSCs were isolated and cultured from human bone marrow. Male C57/BL mice were irradiated with a dose of 18-Gy 6MV X-ray and randomly treated with either vehicle or hBMSCs through tail vein injection with a dose of 103 or 104 cells/g of body weight (low or high dose of hBMSCs) within 24 h. Aortic inflammation, oxidative stress, and vascular remodeling were assessed by immunohistochemical staining at 3, 7, 14, 28, and 84 days after irradiation. The results revealed irradiation caused aortic cell apoptosis and fibrotic remodeling indicated by aortic thickening, collagen accumulation, and increased expression of profibrotic cytokines (CTGF and TGF-β). Further investigation showed that irradiation resulted in elevated expression of inflammation-related molecules (TNF-α and ICAM-1) and oxidative stress indicators (4-HNE and 3-NT). Both of the low and high doses of hBMSCs alleviated the above irradiation-induced pathological changes and elevated the antioxidant enzyme expression of HO-1 and catalase in the aorta. The high dose even showed a better protective effect. In conclusion, hBMSCs provide significant protection against RIAI possibly through inhibition of aortic oxidative stress and inflammation. Therefore, hBMSCs can be used as a potential therapy to treat RIAI.
Collapse
|
9
|
Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial‑like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep 2016; 14:4830-4836. [PMID: 27748807 PMCID: PMC5102044 DOI: 10.3892/mmr.2016.5799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the contribution of bone marrow-derived mesenchymal stem cells (BM-MSCs) to neointimal formation, and whether endothelial-like cells (ELCs) differentiated from BM-MSCs could attenuate intimal hyperplasia following vascular injury. BM-MSCs were isolated from rat femurs and tibias and expanded ex vivo. Differentiation into ELCs was induced by cultivation in the presence of 50 ng/ml vascular endothelial growth factor (VEGF). MSCs and ELCs were labeled with BrdU and injected via the femoral vein on the day of a balloon-induced carotid artery injury. Carotid artery morphology and histology were examined using ultrasound biomicroscopy and immunohistochemistry. Flow cytometry analysis measured CD31 and CD34 expression, and immunofluorescence analysis measured von Willebrand factor and VEGF receptor 2 expression in ELCs. Ultrasound biomicroscopy observed a significantly increased intima-media thickness in the phosphate-buffered saline (PBS) and BM-MSCs groups compared with the ELCs group. Intima/media ratios were significantly reduced in the ELCs group compared with the PBS and BM-MSCs groups. At 4 weeks of administration, the cells labeled with BrdU were abundantly located in the adventitial region and neointima. MSCs were able to differentiate into ELCs in vitro. Cell therapy with BM-MSCs was not able to attenuate neointima thickness, however transplantation with ELCs significantly suppressed intimal hyperplasia following vascular injury.
Collapse
Affiliation(s)
- Jianzhong Xu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Duojiao Wu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yan Yang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Kaida Ji
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
10
|
Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clin Sci (Lond) 2014; 127:615-34. [PMID: 25072327 DOI: 10.1042/cs20140131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Restenosis is the pathophysiological process occurring in 10-15% of patients submitted to revascularization procedures of coronary, carotid and peripheral arteries. It can be considered as an excessive healing reaction of the vascular wall subjected to arterial/venous bypass graft interposition, endarterectomy or angioplasty. The advent of bare metal stents, drug-eluting stents and of the more recent drug-eluting balloons, have significantly reduced, but not eliminated, the incidence of restenosis, which remains a clinically relevant problem. Biomedical research in pre-clinical animal models of (re)stenosis, despite its limitations, has contributed enormously to the identification of processes involved in restenosis progression, going well beyond the initial dogma of a primarily proliferative disease. Although the main molecular and cellular mechanisms underlying restenosis have been well described, new signalling molecules and cell types controlling the progress of restenosis are continuously being discovered. In particular, microRNAs and vascular progenitor cells have recently been shown to play a key role in this pathophysiological process. In addition, the advanced highly sensitive high-throughput analyses of molecular alterations at the transcriptome, proteome and metabolome levels occurring in injured vessels in animal models of disease and in human specimens serve as a basis to identify novel potential therapeutic targets for restenosis. Molecular analyses are also contributing to the identification of reliable circulating biomarkers predictive of post-interventional restenosis in patients, which could be potentially helpful in the establishment of an early diagnosis and therapy. The present review summarizes the most recent and promising therapeutic strategies identified in experimental models of (re)stenosis and potentially translatable to patients subjected to revascularization procedures.
Collapse
|
11
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
12
|
Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:945127. [PMID: 24551856 PMCID: PMC3914557 DOI: 10.1155/2014/945127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/22/2013] [Accepted: 12/21/2013] [Indexed: 12/30/2022]
Abstract
Bone-marrow-derived cells can generate vascular progenitor cells that contribute to pathological remodeling in models of restenosis after percutaneous coronary intervention (PCI). We created models of vascular injury in mice with bone marrow transplants (BMT) to determine relationships between bone-marrow-derived cells and subsequent biological factors. Mesenchymal stromal cells (MSCs) seemed to inhibit the inflammatory reaction and help stabilize injured vascular regions through mobilizing more endogenous bone-marrow-derived (EBMD) cells to the peripheral circulation. Granulocyte-colony stimulating factor (G-CSF) mobilized more EBMD cells to the peripheral circulation, and they accumulated on the injured side of the vascular lumen. The inflammatory cytokines, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-6 mobilized EBMD cells that play an important role in the process of neointimal hyperplasia after vascular injury. These factors might comprise a mechanism that alters the transdifferentiation or paracrine capabilities of EBMD cells and are potential targets of treatment for patients with cardiovascular diseases.
Collapse
|
13
|
Shoji M, Furuyama F, Yokota Y, Omori Y, Sato T, Tsunoda F, Iso Y, Koba S, Geshi E, Katagiri T, Suzuki H, Kobayashi Y. IL-6 mobilizes bone marrow-derived cells to the vascular wall, resulting in neointima formation via inflammatory effects. J Atheroscler Thromb 2013; 21:304-12. [PMID: 24366256 DOI: 10.5551/jat.19414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Among the many factors related to bone marrow cell mobilization, local inflammation induced by cytokines may drive bone marrow cells to the vascular wall, resulting in a thickened neointima. However, the relationship between inflammatory reactions and bone marrow cell invasion has not yet been fully clarified. METHODS We inserted a large wire into the femoral artery in male balb/c(WT), interleukin (IL)-6-knockout (KO) and bone marrow-transplanted (BMT) mice that had received bone marrow cells from KO mice. Immunohistochemistry was performed to evaluate the degree of intimal hyperplasia and inflammation following vascular injury. RESULTS Three days after the vascular injury, the number of CD34/Sca-1-positive cells in the blood was higher in the KO mice. The numbers of apoptotic cells in the neointima was lower in the KO and BMT mice at two hours after injury. The morphometric analysis performed at one and four weeks after injury showed that the intima/media ratio was significantly lower in the KO and BMT mice, while CD34-positive cells were much more frequent in the WT mice. Furthermore, re-endothelialization appeared earlier in the KO and BMT mice than in the WT mice. No differences in the levels of vascular endothelial growth factor or hepatocyte growth factor were observed in the mice sera between the WT, KO and BMT mice after injury. The in vitro culture of bone marrow cells showed more differentiated smooth muscle-like cells in the WT mice than in the KO mice. CONCLUSIONS IL-6 is involved in neointimal formation following vascular injury, possibly acting through inflammatory effects inducing the production of bone marrow cells.
Collapse
Affiliation(s)
- Makoto Shoji
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bianchi G, Morandi F, Cilli M, Daga A, Bocelli-Tyndall C, Gambini C, Pistoia V, Raffaghello L. Close interactions between mesenchymal stem cells and neuroblastoma cell lines lead to tumor growth inhibition. PLoS One 2012; 7:e48654. [PMID: 23119082 PMCID: PMC3485378 DOI: 10.1371/journal.pone.0048654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/28/2012] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted much interest in oncology since they exhibit marked tropism for the tumor microenvironment and support or suppress malignant cell growth depending on the tumor model tested. The aim of this study was to investigate the role of MSCs in the control of the growth of neuroblastoma (NB), which is the second most common solid tumor in children. In vivo experiments showed that systemically administered MSCs, under our experimental conditions, did not home to tumor sites and did not affect tumor growth or survival. However, MSCs injected intratumorally in an established subcutaneous NB model reduced tumor growth through inhibition of proliferation and induction of apoptosis of NB cells and prolonged the survival of hMSC-treated mice. The need for contact between MSCs and NB cells was further supported by in vitro experiments. In particular, MSCs were found to be attracted by NB cells, and to affect NB cell proliferation with different results depending on the cell line tested. Moreover, NB cells, after pre-incubation with hMSCs, acquired a more invasive behavior towards CXCL12 and the bone marrow, i.e., the primary site of NB metastases. In conclusion, this study demonstrates that functional cross-talk between MSCs and NB cell lines used in our experiments can occur only within short range interaction. Thus, this report does not support the clinical use of MSCs as vehicles for selective delivery of antitumor drugs at the NB site unless chemotherapy and/or radiotherapy create suitable local conditions for MSCs recruitment.
Collapse
Affiliation(s)
| | - Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Cilli
- Technology Transfer, Animal Research Facility, San Martino-National Institute for Cancer Research, Genoa, Italy
| | - Antonio Daga
- Department of Translational Oncology, National Institute for Cancer Research, Genoa, Italy
| | | | - Claudio Gambini
- Laboratory of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
- * E-mail:
| |
Collapse
|
15
|
Niu SH, Jian LG, Zhang LH. Protective Effects of Mesenchymal Stem Cells with Transient Overexpression of Hmgb1 on Balloon-Induced Carotid Artery Injury. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSC) play a crucial role in endothelial repair after artery injury. The high mobility group box 1 (HMGB1) is a key modulator of the homing of MSC to impaired artery and endothelialization. This study was aimed to determine whether balloon-induced carotid artery injury could be improved by transplantation with MSC modified by HMGB1. MSC were infected by adenoviral serotype 5 encoding recombinant green fluorescent protein (GFP) gene and HMGB1 (ad5GFP-HMGB1). The expression of HMGB1, vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) was detected in MSC using Real-time PCR, Western blot and semi-quantitative immunohistochemical assays. In vivo, reendothelialization was examined in rats subjected to carotid artery injury. The homing of MSC was observed under fluorescence microscopy, and the levels of serum tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) was assessed by ELISA assay. As a result, compared with the MSC group, the expression of HMGB1, VEGF and PCNA was markedly increased, vascular reendothelialization was accelerated, and the levels of serum TNF-α and CRP were decreased in group ad5GFP and ad5GFP-HMGB1. Transplantation of MSC infected with adGFP-HMGB1 strengthened the MSC effect. Taken together, modification of HMGB1 can enhance the protective effects of MSC on balloon-induced carotid artery injury through up-regulation of VEGF and PCNA expression and inhibition of the inflammatory response. HMGB1 in MSC may represent a novel therapeutic target for the treatment of endothelial repair.
Collapse
Affiliation(s)
- S-H. Niu
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L-G. Jian
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - L-H. Zhang
- Department of Cardiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, Lerman A, Textor SC, Lerman LO. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells 2012; 30:1030-41. [PMID: 22290832 DOI: 10.1002/stem.1047] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reno-protective strategies are needed to improve renal outcomes in patients with atherosclerotic renal artery stenosis (ARAS). Adipose tissue-derived mesenchymal stem cells (MSCs) can promote renal regeneration, but their potential for attenuating cellular injury and restoring kidney repair in ARAS has not been explored. We hypothesized that replenishment of MSC as an adjunct to percutaneous transluminal renal angioplasty (PTRA) would restore renal cellular integrity and improve renal function in ARAS pigs. Four groups of pigs (n = 7 each) were studied after 16 weeks of ARAS, ARAS 4 weeks after PTRA and stenting with or without adjunct intrarenal delivery of MSC (10 × 10(6) cells), and controls. Stenotic kidney blood flow (renal blood flow [RBF]) and glomerular filtration rate (GFR) were measured using multidetector computer tomography (CT). Renal microvascular architecture (micro-CT), fibrosis, inflammation, and oxidative stress were evaluated ex vivo. Four weeks after successful PTRA, mean arterial pressure fell to a similar level in all revascularized groups. Stenotic kidney GFR and RBF remained decreased in ARAS (p = .01 and p = .02) and ARAS + PTRA (p = .02 and p = .03) compared with normal but rose to normal levels in ARAS + PTRA + MSC (p = .34 and p = .46 vs. normal). Interstitial fibrosis, inflammation, microvascular rarefaction, and oxidative stress were attenuated only in PTRA + MSC-treated pigs. A single intrarenal delivery of MSC in conjunction with renal revascularization restored renal hemodynamics and function and decreased inflammation, apoptosis, oxidative stress, microvascular loss, and fibrosis. This study suggests a unique and novel therapeutic potential for MSC in restoring renal function when combined with PTRA in chronic experimental renovascular disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Psaltis PJ. Mechanistic insights into arterial repair with mesenchymal stromal cells : editorial to: "Stem cell therapy for arterial restenosis: potential parameters contributing to the success of bone marrow-derived mesenchymal stromal cells" by A. Forte et al. Cardiovasc Drugs Ther 2012; 26:1-3. [PMID: 22160790 DOI: 10.1007/s10557-011-6362-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Oskowitz AZ, Penfornis P, Tucker A, Prockop DJ, Pochampally R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int J Biochem Cell Biol 2011; 43:1563-72. [PMID: 21794839 PMCID: PMC3476475 DOI: 10.1016/j.biocel.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/29/2011] [Accepted: 07/11/2011] [Indexed: 12/19/2022]
Abstract
Recently we demonstrated that the miRNA regulate human mesenchymal stem cells (hMSCs) differentiation. To determine the role of the miRNA pathway in hMSCs proliferation, Drosha and Dicer knockdown hMSCs were generated using a lentiviral based tetracycline inducible shRNA. hMSCs with reduced Drosha expression had a significantly reduced proliferation rate, while hMSCs with reduced Dicer expression displayed a proliferation rate similar to untransduced cells. Cell cycle analysis identified that unlike Dicer knockdown, Drosha knockdown hMSCs contained an increased number of G1 phase cells, with a reduced level of cells in S phase, compared to controls. ELISAs of hMSCs revealed decreased levels of pRB and stable levels of total RB with Drosha knockdown. Two key regulators of the G1/S phase transition, cyclin dependent kinase inhibitor 2A (p16) and cyclin dependent kinase inhibitor 2B (p15), were increased in Drosha knockdown cells but not in Dicer knockdown. Transcripts of 28S and 18S rRNA were significantly reduced in Drosha knockdown hMSCs, with no change in rRNA levels in Dicer knockdown hMSCs. 45S pre-rRNA transcripts were not significantly different in either knockdown model. The above results indicate that Drosha modifies hMSCs proliferation through a miRNA independent mechanism, potentially by regulating rRNA processing.
Collapse
Affiliation(s)
- Adam Z Oskowitz
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Patrice Penfornis
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Darwin J Prockop
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Biochemistry Tulane University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Radhika Pochampally
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Pharmacology, New Orleans, LA 70112, U.S.A
| |
Collapse
|