1
|
Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Libante V, Marois-Créhan C, Payot S. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom 2024; 10:001224. [PMID: 38536216 PMCID: PMC10995628 DOI: 10.1099/mgen.0.001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Claire de Boisséson
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Pierrick Lucas
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Génétique Virale et Biosécurité, BP53 22440 Ploufragan, France
| | - Stéphanie Bougeard
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Épidémiologie, santé et bien-être, BP53 22440 Ploufragan, France
| | | | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
2
|
Dong CL, Che RX, Wu T, Qu QW, Chen M, Zheng SD, Cai XH, Wang G, Li YH. New Characterization of Multi-Drug Resistance of Streptococcus suis and Biofilm Formation from Swine in Heilongjiang Province of China. Antibiotics (Basel) 2023; 12:antibiotics12010132. [PMID: 36671333 PMCID: PMC9854593 DOI: 10.3390/antibiotics12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to investigate the antimicrobial resistance profiles and genotypes of Streptococcus suis in Heilongjiang Province, China. A total of 29 S. suis were isolated from 332 samples collected from 6 pig farms. The results showed that serotypes 2, 4 and 9 were prevalent, and all the clinical isolates were resistant to at least two antibacterial drugs. The most resisted drugs were macrolides, and the least resisted drugs were fluoroquinolones. Resistant genes ermB and aph (3')-IIIa were highly distributed among the isolates, with the detection rates of 79.31% and 75.86%. The formation of biofilm could be observed in all the isolated S. suis, among which D-1, LL-1 and LL-3 strains formed stronger biofilm structure than other strains. The results indicate that S. suis in Heilongjiang Province presents a multi-drug resistance to commonly used antimicrobial drugs, which was caused by the same target gene, the dissemination of drug resistance genes, and bacterial biofilm.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150038, China
| | - Rui-Xiang Che
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163318, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Qian-Wei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Mo Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Si-Di Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150008, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150008, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271002, China
- Correspondence: (G.W.); (Y.-H.L.)
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150038, China
- Correspondence: (G.W.); (Y.-H.L.)
| |
Collapse
|
3
|
Li J, Fan Q, Zuo J, Xue B, Zhang X, Wei Y, Sun L, Grenier D, Yi L, Hou X, Wang Y. Paeoniflorin combined with norfloxacin ameliorates drug-resistant Streptococcus suis infection. J Antimicrob Chemother 2022; 77:3275-3282. [PMID: 36173390 DOI: 10.1093/jac/dkac313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The increased resistance of bacterial pathogens to fluoroquinolones (FQs), such as norfloxacin and ciprofloxacin, supports the need to develop new antibacterial drugs and combination therapies using conventional antibiotics. The LuxS/AI-2 quorum sensing (QS) system can regulate the complex group behaviour of Streptococcus suis and impact its susceptibility to FQs. OBJECTIVES We investigated the combination of paeoniflorin and norfloxacin as a novel and effective strategy against FQ-resistant S. suis. METHODS FIC, AI-2 activity assay, real-time RT-PCR and biofilm inhibition assays were performed to investigate the in vitro effect of paeoniflorin combined with norfloxacin. Mouse protection and mouse anti-infection assays were performed to investigate the in vivo effect of paeoniflorin combined with norfloxacin. RESULTS FIC results showed that paeoniflorin and norfloxacin exert a synergistic bactericidal effect. Evidence was brought that paeoniflorin reduces the S. suis AI-2 activity and significantly down-regulates the transcription of the FQ efflux pump gene. In addition, paeoniflorin can inhibit biofilm formation, thereby promoting the ability of norfloxacin to kill S. suis. Finally, we showed in a mouse model that paeoniflorin in association with norfloxacin is effective to treat S. suis infections. CONCLUSIONS This study highlighted the inhibitory potential of paeoniflorin on the LuxS/AI-2 QS system of S. suis, and provided evidence that it can inhibit the FQ efflux pump and prevent biofilm formation to cooperate with norfloxacin in the treatment of resistant S. suis-related infections.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Ying Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Liyun Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China.,College of Life Science, Luoyang Normal University, Luoyang, Henan, China
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, Henan, China
| |
Collapse
|
4
|
Uruén C, García C, Fraile L, Tommassen J, Arenas J. How Streptococcus suis escapes antibiotic treatments. Vet Res 2022; 53:91. [DOI: 10.1186/s13567-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractStreptococcus suis is a zoonotic agent that causes sepsis and meningitis in pigs and humans. S. suis infections are responsible for large economic losses in pig production. The lack of effective vaccines to prevent the disease has promoted the extensive use of antibiotics worldwide. This has been followed by the emergence of resistance against different classes of antibiotics. The rates of resistance to tetracyclines, lincosamides, and macrolides are extremely high, and resistance has spread worldwide. The genetic origin of S. suis resistance is multiple and includes the production of target-modifying and antibiotic-inactivating enzymes and mutations in antibiotic targets. S. suis genomes contain traits of horizontal gene transfer. Many mobile genetic elements carry a variety of genes that confer resistance to antibiotics as well as genes for autonomous DNA transfer and, thus, S. suis can rapidly acquire multiresistance. In addition, S. suis forms microcolonies on host tissues, which are associations of microorganisms that generate tolerance to antibiotics through a variety of mechanisms and favor the exchange of genetic material. Thus, alternatives to currently used antibiotics are highly demanded. A deep understanding of the mechanisms by which S. suis becomes resistant or tolerant to antibiotics may help to develop novel molecules or combinations of antimicrobials to fight these infections. Meanwhile, phage therapy and vaccination are promising alternative strategies, which could alleviate disease pressure and, thereby, antibiotic use.
Collapse
|
5
|
Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD, Wileman TM, Hernandez-Garcia J, Williamson SM, Parkhill J, Maskell DJ, Zhou R, Fittipaldi N, Gottschalk M, Tucker AW(D, Hoa NT, Welch JJ, Weinert LA. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol 2021; 19:191. [PMID: 34493269 PMCID: PMC8422772 DOI: 10.1186/s12915-021-01094-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.
Collapse
Affiliation(s)
- Nazreen F. Hadjirin
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Eric L. Miller
- grid.256868.70000 0001 2215 7365Microbial Ecology and Evolution Laboratory, Haverford College, Haverford, USA
| | - Gemma G. R. Murray
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Phung L. K. Yen
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ho D. Phuc
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Thomas M. Wileman
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Juan Hernandez-Garcia
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Susanna M. Williamson
- grid.13689.350000 0004 0426 1697Department for Environment, Food and Rural Affairs (Defra), London, UK
| | - Julian Parkhill
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- grid.1008.90000 0001 2179 088XChancellery, University of Melbourne, Melbourne, Australia
| | - Rui Zhou
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Nahuel Fittipaldi
- grid.14848.310000 0001 2292 3357Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | - Marcelo Gottschalk
- grid.14848.310000 0001 2292 3357Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada
| | - A. W. ( Dan) Tucker
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ngo Thi Hoa
- grid.412433.30000 0004 0429 6814Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - John J. Welch
- grid.5335.00000000121885934Department of Genetics, University of Cambridge, Cambridge, UK
| | - Lucy A. Weinert
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Chaiden C, Jaresitthikunchai J, Phaonakrop N, Roytrakul S, Kerdsin A, Nuanualsuwan S. Peptidomics Analysis of Virulent Peptides Involved in Streptococcus suis Pathogenesis. Animals (Basel) 2021; 11:ani11092480. [PMID: 34573446 PMCID: PMC8468194 DOI: 10.3390/ani11092480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The virulence factors and pathogenesis of S. suis are inconclusive. Here, the associated proteins, or their derived peptides, involved in the survival of S. suis when simulated with a blood environment are demonstrated. The results reveal the derived peptides or proteins of S. suis potentially serving as the putative virulence factors. Further studies based on our findings could be used to fulfill the knowledge gap of S. suis pathogenesis. Abstract Streptococcus suis (S. suis) is a zoonotic pathogen causing severe streptococcal disease worldwide. S. suis infections in pigs and humans are frequently associated with the virulent S. suis serotype 2 (SS2). Though various virulence factors of S. suis have been proposed, most of them were not essentially accounted for in the experimental infections. In the present study, we compared the peptidomes of highly virulent SS2 and SS14 in humans, the swine causative serotypes SS7 and SS9, and the rarely reported serotypes SS25 and SS27, and they were cultured in a specified culture medium containing whole blood to simulate their natural host environment. LC-MS/MS could identify 22 unique peptides expressed in the six S. suis serotypes. Under the host-simulated environment, peptides from the ABC-type phosphate transport system (SSU05_1106) and 30S ribosomal protein S2 (rpsB) were detected in the peptidome of virulent SS2 and SS14. Therefore, we suggest that these two proteins or their derived peptides might be involved in the survival of S. suis when simulated with a blood environment.
Collapse
Affiliation(s)
- Chadaporn Chaiden
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani 12120, Thailand; (J.J.); (N.P.)
- Correspondence: (S.R.); (S.N.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (S.R.); (S.N.)
| |
Collapse
|
7
|
Du F, Lv X, Duan D, Wang L, Huang J. Characterization of a Linezolid- and Vancomycin-Resistant Streptococcus suis Isolate That Harbors optrA and vanG Operons. Front Microbiol 2019; 10:2026. [PMID: 31551963 PMCID: PMC6746840 DOI: 10.3389/fmicb.2019.02026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Linezolid and vancomycin are among the last-resort antimicrobial agents in the treatment of multidrug-resistant Gram-positive bacterial infections. Linezolid- and vancomycin-resistant (LVR) Gram-positive bacteria may pose severe threats to public health. In this study, three optrA- and vanG-positive Streptococcus suis strains were isolated from two farms of different cities. There were only 1 and 343 single-nucleotide polymorphisms in coding region (cSNPs) of HCB4 and YSJ7 to YSJ17, respectively. Mobilome analysis revealed the presence of vanG, erm(B), tet(O/W/32/O), and aadE-apt-sat4-aphA3 cluster on an integrative and conjugative element, ICESsuYSJ17, and erm(B), aphA3, aac(6')-aph(2″), catpC194, and optrA on a prophage, ΦSsuYSJ17-3. ICESsuYSJ17 exhibited a mosaic structure and belongs to a highly prevalent and transferable ICESa2603 family of Streptococcus species. ΦSsuYSJ17-3 shared conserved backbone to a transferable prophage Φm46.1. A novel composite transposon, IS1216E-araC-optrA-hp-catpC194-IS1216E, which can be circulated as translocatable unit (TU) by IS1216E, was integrated on ΦSsuYSJ17-3. Vancomycin resistance phenotype and vanG transcription assays revealed that the vanG operon was inducible. The LVR strain YSJ17 exhibited moderate virulence in a zebrafish infection model. To our knowledge, this is the first report of LVR isolate, which is mediated by acquired resistance genes optrA and vanG operons in Gram-positive bacteria. Since S. suis has been recognized as an antimicrobial resistance reservoir in the spread of resistance genes to major streptococcal pathogens, the potential risks of disseminating of optrA and vanG from S. suis to other Streptococcus spp. are worrisome and routine surveillance should be strengthened.
Collapse
Affiliation(s)
- Fanshu Du
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Duan Duan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Huang J, Sun J, Wu Y, Chen L, Duan D, Lv X, Wang L. Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. Int J Antimicrob Agents 2019; 54:43-48. [PMID: 30981924 DOI: 10.1016/j.ijantimicag.2019.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/30/2022]
Abstract
One hundred and seven Streptococcus suis isolates were collected from healthy pigs or asymptomatic carriers in Jiangsu, China in 2016-2017. Thirty-eight percent of the isolates were linezolid-resistant and all carried the optrA gene. Among them, one isolate, SFJ44, was resistant to all 20 of the antibiotics tested, except for ceftiofur, and thus exhibited an extensively-drug-resistant phenotype. This isolate carried the optrA gene and the bacitracin resistance locus bcrABDR on an antibiotic-resistance-associated genomic island (ARGI1), and harboured the resistance genes cfr, aadE, sat4, spw-like, aphA3, mef(A), msr(D), erm(A)-like, erm(B), tetAB(P)', tet(M) and catQ on ARGI2∼4. The IS1216E-bcrABDR-ISEnfa1 segment showed >99.9% sequence identity to corresponding sequences from other species. The cfr gene was located on ARGI4, and two IS6 family insertion sequences, IS1216E and ISTeha2, were found upstream and downstream of cfr-ΔISEnfa5, respectively. A circular intermediate of bcrABDR-ISEnfa1 was detected, suggesting the role of ISEnfa1 in dissemination of bcrABDR. Other antibiotic resistance genes might be acquired from different Gram-positive pathogens. Infection of zebrafish showed that SFJ44 exhibited a virulence level comparable to serotype 2 hypervirulent strain SC070731, highlighting the need for surveillance of the pathogenicity of multi-drug-resistant S. suis isolates. This is the first report of the co-existence of optrA and cfr, and of the bcrABDR locus in streptococci. As it has been suggested that S. suis may act as an antibiotic resistance reservoir contributing to the spread of resistance genes to major streptococcal pathogens, the potential dissemination of these resistance genes among Gram-positive bacteria is of concern and routine surveillance should be strengthened.
Collapse
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanchang Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Li Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Duan Duan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xi Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
9
|
Yongkiettrakul S, Maneerat K, Arechanajan B, Malila Y, Srimanote P, Gottschalk M, Visessanguan W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet Res 2019; 15:5. [PMID: 30606175 PMCID: PMC6318959 DOI: 10.1186/s12917-018-1732-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Background Prophylaxis and treatment of emerging zoonotic Streptococcus suis infection in agricultural and healthcare settings mainly rely on antibiotics. However, continued use of antibiotics contributing to emergence and widespread of antibiotic resistant S. suis becomes a significant challenge in many endemic countries, including Thailand. Meanwhile, the knowledge of antibiotic susceptibility patterns of bacterial pathogens is required for overcoming the antimicrobial resistance problem, the information of antibiotic susceptibility of S. suis strains isolated in Thailand remains limited. This study aims to assess the susceptibility of Thai-isolated S. suis strains to different antibiotic classes in order to gain an insight into the distribution of antibiotic-resistant patterns of S. suis strains in different regions of Thailand. Results This study revealed the antimicrobial resistance and multidrug resistance of 262 S. suis strains isolated in different regions of Thailand. Susceptibility testing indicated widespread resistance to macrolides and tetracyclines of S. suis strains in the country. Beta-lactam antibiotic drugs (including cefotaxime and ceftiofur), vancomycin, chloramphenicol, as well as florfenicol were potentially the most effective therapeutic drugs for the treatment of S. suis infection in both pigs and humans. High prevalence of intermediate susceptibility of S. suis isolated from asymptomatic pigs for penicillin G, gentamicin, enrofloxacin, and norfloxacin could be the premise of the emergence of S. suis antibiotic resistance. Resistance was also found in S. suis strains isolated from asymptomatic pigs indicating that they could act as reservoirs of antibiotic resistance genes. Conclusions To the best of our knowledge, this is the first report on antimicrobial resistance of a large collection of S. suis strains isolated from pigs and humans in Thailand. It revealed the multidrug resistance of S. suis strains in pigs and humans. The information gained from this study raises an awareness and encourage best practices of appropriate antibiotic drug prescribing and use among human health and agriculture sectors. Electronic supplementary material The online version of this article (10.1186/s12917-018-1732-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Krissana Maneerat
- College of Alternative Medicine, Chandrakasem Rajabhat University, Bangkok, Thailand
| | - Buppa Arechanajan
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Marcello Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
10
|
Huang J, Chen L, Li D, Wang M, Du F, Gao Y, Wu Z, Wang L. Emergence of a vanG-carrying and multidrug resistant ICE in zoonotic pathogen Streptococccus suis. Vet Microbiol 2018; 222:109-113. [PMID: 30080664 DOI: 10.1016/j.vetmic.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/03/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Vancomycin resistance occurs frequently in Enterococcus species, but has not yet been reported in Streptococcus suis, a previously neglected, newly emergent zoonotic pathogen. In this study, we tested the vancomycin susceptibility of 256 human and swine S. suis isolates from 2005 to 2016 and analyzed the mechanism of vancomycin resistance. We found that one isolate BSB6 was resistant to vancomycin with the MIC value of 4 mg/L and to another eleven kinds of tested antimicrobial agents. Whole genome sequencing showed that chromosomal gene mutations, and acquired genes in ICESsuBSB6 accounted for the resistance phenotypes. ICESsuBSB6 was ∼83-kb in size and encoded two resistance gene regions, ARGR1 and ARGR2. ARGR1 harbored six resistance genes, namely erm(B), aadE-apt-sat4-aphA3 cluster and tet(O/W/32/O), and showed highes similarity with corresponding sequences of S. suis ICESsu32457 and Enterococcus faecalis plasmid pEF418. ARGR2 encoded a vanG-type resistance operon. The resistance region showed highest similarity to that of E. faecalis BM4518 vanG1, but the regulatory region was more similar to that of S. agalactiae GBS-NM vanG2. Vancomycin resistance in isolate BSB6 was inducible. The study is the first report of vanG-type resistance in zoonotic pathogen S. suis and highlights importance of its surveillance.
Collapse
Affiliation(s)
- Jinhu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Daiwei Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Mengli Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanshu Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Lei Z, Liu Q, Yang B, Khaliq H, Cao J, He Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front Pharmacol 2017; 8:856. [PMID: 29209222 PMCID: PMC5701813 DOI: 10.3389/fphar.2017.00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the Cmax (6.28 μg/ml), AUC0-24 h (60.30 μg.h/ml), AUC0-∞ (88.94 μg.h/ml), T1/2ke, (12.48 h), Tmax (0.75 h) and Clb (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS, was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid Emax modeling, the AUC0-24h/MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Jin H, Qi C, Zou Y, Kong Y, Ruan Z, Ding H, Xie X, Zhang J. Biochanin A partially restores the activity of ofloxacin and ciprofloxacin against topoisomerase IV mutation-associated fluoroquinolone-resistant Ureaplasma species. J Med Microbiol 2017; 66:1545-1553. [PMID: 28984242 DOI: 10.1099/jmm.0.000598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aims to investigate the synergistic antimicrobial activity of four phytoalexins in combination with fluoroquinolones against Ureaplasma spp., a genus of cell wall-free bacteria that are intrinsically resistant to many available antibiotics, making treatment inherently difficult. METHODOLOGY A total of 22 958 urogenital tract specimens were assessed for Ureaplasma spp. identification and antimicrobial susceptibility. From these, 31 epidemiologically unrelated strains were randomly selected for antimicrobial susceptibility testing to determine the minimum inhibitory concentration (MIC) of four fluoroquinolones and the corresponding quinolone resistance-determining regions (QRDRs). Synergistic effects between fluoroquinolones and four phytoalexins (reserpine, piperine, carvacrol and biochanin A) were evaluated by fractional inhibitory concentration indices (FICIs). RESULTS Analysis of the QRDRs suggested a vital role for the mutation of Ser-83→Leu in ParC in fluoroquinolone-resistant strains, and the occurrence of mutations in QRDRs showed significant associations with the breakpoint of levofloxacin. Moreover, diverse synergistic effects of the four phytoalexins with ofloxacin or ciprofloxacin were observed and biochanin A was able to enhance the antimicrobial activity of fluoroquinolones significantly. CONCLUSION This is the first report of the antimicrobial activity of biochanin A in combination with fluoroquinolones against a pathogenic mycoplasma, and opens up the possibility of using components of biochanin A as a promising therapeutic option for treating antibiotic-resistant Ureaplasma spp. infections.
Collapse
Affiliation(s)
- Hong Jin
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| | - Chao Qi
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| | - Yanping Zou
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China.,Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, PR China
| | - Yingying Kong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China.,Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| | - Zhi Ruan
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| | - Honghui Ding
- Yiwu Maternity and Child Care Hospital, Jinhua, Zhejiang 322000, PR China
| | - Xinyou Xie
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| | - Jun Zhang
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China.,Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China
| |
Collapse
|
13
|
Athey TBT, Teatero S, Takamatsu D, Wasserscheid J, Dewar K, Gottschalk M, Fittipaldi N. Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One 2016; 11:e0150908. [PMID: 26954687 PMCID: PMC4783015 DOI: 10.1371/journal.pone.0150908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.
Collapse
Affiliation(s)
| | | | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- The United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Jessica Wasserscheid
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
14
|
Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis. Curr Top Microbiol Immunol 2016; 398:103-121. [PMID: 27738916 DOI: 10.1007/82_2016_506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.
Collapse
|