1
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
2
|
Saxena B, Parmar P, Chauhan H, Singh P, Datusalia AK, Vyas VK, Tripathi N, Shah J. Neuroprotective effect of taxifolin against aluminum chloride-induced dementia and pathological alterations in the brain of rats: possible involvement of toll-like receptor 4. Toxicol Mech Methods 2024; 34:703-716. [PMID: 38465425 DOI: 10.1080/15376516.2024.2329653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aluminum (Al) overexposure damages various organ systems, especially the nervous system. Regularly administered aluminum chloride (AlCl3) to rats causes dementia and pathophysiological alterations linked to Alzheimer's disease (AD). Taxifolin's neuroprotective effects against AlCl3-induced neurotoxicity in vitro and in vivo studies were studied. Taxifolin (0.1, 0.3, 1, 3, and 10 μM) was tested against AlCl3 (5 mM)-induced neurotoxicity in C6 and SH-SY5Y cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Additionally, neural morphology was examined by confocal microscopy. Additionally, taxifolin's mode of binding with the co-receptor of toll-like receptor 4 (TLR4), human myeloid differentiation-2 (hMD-2) was investigated. AlCl3 (25 mg/kg/d, i.p.) was administered to rats for 14 d, and from the eighth day, taxifolin (1, 2, and 5 mg/kg/d, i.p.) was given along with AlCl3. This study assessed memory impairment using the Morris water maze, plus maze, and pole tests. This study also performed measurement of oxidant (malondialdehyde [MDA] and nitrite), antioxidant (reduced glutathione), and inflammatory (myeloperoxidase [MPO] activity, TLR4 expression) parameters in rats' brain in addition to histopathology. The docking score for taxifolin with hMD-2 was found to be -4.38 kcal/mol. Taxifolin treatment reduced the neurotoxicity brought on by AlCl3 in both C6 and SH-SY5Y cells. Treatment with 10 μM taxifolin restored AlCl3-induced altered cell morphology. AlCl3 administration caused memory loss, oxidative stress, inflammation (increased MPO activity and TLR4 expression), and brain atrophy. Taxifolin treatment significantly improved the AlCl3-induced memory impairment. Taxifolin treatment also mitigated the histopathological and neurochemical consequences of repeated AlCl3 administration in rats. Thus, taxifolin may protect the brain against AD.
Collapse
Affiliation(s)
- Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Pragnesh Parmar
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Heena Chauhan
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Nagja Tripathi
- Department of Pharmacognosy, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
3
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. Histological comparison of repeated mild weight drop and lateral fluid percussion injury models of traumatic brain injury (TBI) in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578177. [PMID: 38352449 PMCID: PMC10862833 DOI: 10.1101/2024.01.31.578177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Traumatic brain injury (TBI) heterogeneity has led to the development of several preclinical models, each modeling a distinct subset of outcomes. Selection of an injury model should be guided by the research question and the specific outcome measures of interest. Consequently, there is a need for conducting direct comparisons of different TBI models. Here, we used immunohistochemistry to directly compare the outcomes from two common models, lateral fluid percussion (LFP) and repeat mild weight drop (rmWD), on neuropathology in adult female and male Wistar rats. Specifically, we used immunohistochemistry to measure the effects of LFP and rmWD on cerebrovascular and tight junction disruption, inflammatory markers, mature neurons and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA2/3 area of the hippocampus. Animals were randomized into either LFP or rmWD groups. The LFP group received a craniotomy prior to LFP (or corresponding sham procedure) three days later, while rmWD animals underwent either weight drop or sham (isoflurane only) on each of those four days. After a recovery period of 7 days, animals were euthanized, and brains were harvested for analysis of RECA-1, claudin-5, GFAP, Iba-1, CD-68, NeuN, and wisteria floribunda lectin. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy-only, while rmWD animals showed the least residual changes compared to isoflurane-only controls. These findings support consideration of rmWD as a mild, transient injury. LFP leads to longer-lasting disruptions that are more closely associated with a moderate TBI. We further show that both craniotomy and LFP produced greater disruptions in females relative to males at 7 days post-injury. These findings support the inclusion of a time-matched experimentally-naïve or anesthesia-only control group in preclinical TBI research to enhance the validity of data interpretation and conclusions.
Collapse
|
4
|
O’Connell CJ, Brown RS, Peach TM, Traubert OD, Schwierling HC, Notorgiacomo GA, Robson MJ. Strain in the Midbrain: Impact of Traumatic Brain Injury on the Central Serotonin System. Brain Sci 2024; 14:51. [PMID: 38248266 PMCID: PMC10813794 DOI: 10.3390/brainsci14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.
Collapse
Affiliation(s)
- Christopher J. O’Connell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Ryan S. Brown
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Taylor M. Peach
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | - Owen D. Traubert
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA;
| | - Hana C. Schwierling
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
| | | | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; (C.J.O.); (R.S.B.); (T.M.P.)
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Grandizoli Saletti P, Casillas-Espinosa PM, Panagiotis Lisgaras C, Bi Mowrey W, Li Q, Liu W, Brady RD, Ali I, Silva J, Yamakawa G, Hudson M, Li C, Braine EL, Coles L, Cloyd JC, Jones NC, Shultz SR, Moshé SL, O'Brien TJ, Galanopoulou AS. Tau Phosphorylation Patterns in the Rat Cerebral Cortex After Traumatic Brain Injury and Sodium Selenate Effects: An Epibios4rx Project 2 Study. J Neurotrauma 2024; 41:222-243. [PMID: 36950806 PMCID: PMC11079442 DOI: 10.1089/neu.2022.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.
Collapse
Affiliation(s)
- Patricia Grandizoli Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Pablo M. Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Christos Panagiotis Lisgaras
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wenzhu Bi Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx New York, USA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
| | - Rhys D. Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Idrish Ali
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Juliana Silva
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Glenn Yamakawa
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Matt Hudson
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Emma L. Braine
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Lisa Coles
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - James C. Cloyd
- University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx New York, USA
| | - Terence J. O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx New York, USA
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx New York, USA
| |
Collapse
|
6
|
Saxena B, Bohra B, Lad KA. Weight-Drop Method for Inducing Closed Head Diffuse Traumatic Brain Injury. Methods Mol Biol 2024; 2761:569-588. [PMID: 38427262 DOI: 10.1007/978-1-0716-3662-6_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Traumatic brain injury (TBI) is one of the foremost causes of disability and death globally. Prerequisites for successful therapy of disabilities associated with TBI involved improved knowledge of the neurobiology of TBI, measurement of quantitative changes in recovery dynamics brought about by therapy, and the translation of quantitative methodologies and techniques that were successful in tracking recovery in preclinical models to human TBI. Frequently used animal models of TBI in research and development include controlled cortical impact, fluid percussion injury, blast injury, penetrating blast brain injury, and weight-drop impact acceleration models. Preclinical models of TBI benefit from controlled injury settings and the best prospects for biometric quantification of injury and therapy-induced gradual recovery from disabilities. Impact acceleration closed head TBI paradigm causes diffuse TBI (DTBI) without substantial focal brain lesions in rats. DTBI is linked to a significant rate of death, morbidity, and long-term disability. DTBI is difficult to diagnose at the time of hospitalization with imaging techniques making it challenging to take prompt therapeutic action. The weight-drop method without craniotomy is an impact acceleration closed head DTBI model that is used to induce mild/moderate diffuse brain injuries in rodents. Additionally, we have characterized neuropathological and neurobehavioral outcomes of the weight-drop model without craniotomy for inducing closed head DTBI of graded severity with a range of mass of weights (50-450 gm). This chapter also discusses techniques and protocols for measuring numerous functional disabilities and pathological changes in the brain brought on by DTBI.
Collapse
Affiliation(s)
- Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India.
| | - Bhavna Bohra
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Krishna A Lad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Saral S, Topçu A, Alkanat M, Mercantepe T, Şahin Z, Akyıldız K, Karataş KS, Yıldız L, Tümkaya L, Yazıcı ZA. Agomelatine attenuates cisplatin-induced cognitive impairment via modulation of BDNF/TrkB signaling in rat hippocampus. J Chem Neuroanat 2023; 130:102269. [PMID: 37001681 DOI: 10.1016/j.jchemneu.2023.102269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Cisplatin is a drug used effectively in the treatment of malignant tumors. However, cisplatin has many side effects, including cognitive impairment. Agomelatine, a synthetic melatonin analogue, is an important antidepressant. Increasing evidence has shown that agomelatine may be a potential neuroprotective agent. The aim of this study was to investigate the effect of agomelatine on learning and memory functions in cisplatin-induced cognitive impairment in a rat model. Male rats were administered agomelatine and cisplatin for 4 weeks. Neurobehavioral tests were performed at the end of the 4th week. After behavioral tests, rats were euthanized and BDNF, TNF, IL-1β, MDA and GSH levels were measured in hippocampal homegenates by ELISA. In addition, nNOS and TrkB receptor activity were measured immunohistochemically. The results showed that agomelatine significantly improved cognitive functions in spatial memory tests in rats with cisplatin-induced cognitive impairment. In addition, agomelatine treatment positively affected the discrimination index (DI). On the other hand, agomelatine treatment elevated cisplatin-suppressed hippocampal BDNF levels. Agomelatine treatment reduced cisplatin-induced neuroinflammation by suppressing TNF and IL-1β levels. Similarly, agomelatine reduced oxidative stress in the hippocampus. Histological findings showed that agomelatine treatment reduced pyramidal neuron damage in hippocampal DG, CA1 and CA3. Cisplatin increased nNOS and TrkB positivity in DG, CA1 and CA3 neurons compared to control. In contrast, agomelatine treatment decreased both nNOS and TrkB positive scores. These findings indicate that agomelatine reduces cisplatin-related cognitive impairment by exerting anti-inflammatory action and possibly by the modulation of the BDNF/TrkB/nNOS pathways in the hippocampus.
Collapse
Affiliation(s)
- Sinan Saral
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Physiology, Rize, Turkey.
| | - Atilla Topçu
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Pharmacology, Rize, Turkey
| | - Mehmet Alkanat
- Giresun University, Faculty of Medicine, Department of Physiology, Giresun, Turkey
| | - Tolga Mercantepe
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Zafer Şahin
- Karadeniz Technical University, Faculty of Medicine, Department of Physiology, Trabzon, Turkey
| | - Kerimali Akyıldız
- Recep Tayyip Erdogan University, School of Healh Care Services Vocational, Department of Medical Services and Techniques, Rize, Turkey
| | - Kader Semra Karataş
- Kutahya Health Sciences of University, Faculty of Medicine, Department of Mental Health and Diseases, Kütahya, Turkey
| | - Lamiye Yıldız
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Physiology, Rize, Turkey
| | - Levent Tümkaya
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Zihni Açar Yazıcı
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Microbiology, Rize, Turkey
| |
Collapse
|
8
|
Vora U, Vyas VK, Wal P, Saxena B. Effects of eugenol on the behavioral and pathological progression in the MPTP-induced Parkinson's disease mouse model. Drug Discov Ther 2022; 16:154-163. [PMID: 36002316 DOI: 10.5582/ddt.2022.01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the world's second most common neurological disorder. Oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. Eugenol is a phytochemical with potent antioxidant and anti-inflammatory activity. The present investigation is aimed to study the effect of eugenol in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of PD and its relationship to antioxidant effect. The effects of seven days of oral pre-treatment and post-treatment with three doses of eugenol (25, 50 and 100 mg/kg/day) were investigated against the MPTP-induced PD mouse model. In addition to the assessment of behavioural parameters using various tests (actophotometer, beam walking test, catalepsy, rearing, rotarod), biochemical parameters including lipid peroxidation and reduced glutathione levels in brain tissues, were also estimated in this study. The binding mode of eugenol in the human myeloid differentiation factor-2 (hMD-2) was also studied. Results showed that MPTP administration in mice resulted in the development of motor dysfunction (impaired motor coordination and hypo locomotion) similar to that of PD in different behavioural studies. Pre-treatment with eugenol reversed motor dysfunction caused by MPTP administration while post-treatment with eugenol at a high dose aggravated the symptoms of akinesia associated with MPTP administration. MPTP resulted in increased lipid peroxidation while decreased reduced glutathione levels in the brains of mice. MPTP-induced increased lipid peroxidation and attenuated levels of reduced glutathione were found to be alleviated with eugenol pre-treatment while augmented with eugenol post-treatment. Eugenol showed a binding affinity of -6.897 kcal/mol against the MD2 coreceptor of toll-like receptor-4 (TLR4). Biochemical, as well as neurobehavioral studies, showed that eugenol is having a protective effect, but does not have a curative effect on PD.
Collapse
Affiliation(s)
- Urmi Vora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Pranay Wal
- Department of Pharmacology, Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
9
|
Barot J, Saxena B. Therapeutic effects of eugenol in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. J Tradit Complement Med 2021; 11:318-327. [PMID: 34195026 PMCID: PMC8240337 DOI: 10.1016/j.jtcme.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background and aim Traumatic brain injury (TBI) results in death or long term functional disabilities. Eugenol is demonstrated to be beneficial in a range of experimental models of neurological disorders via its anti-inflammatory and antioxidant properties. Thus, the present study was designed to investigate the neuroprotective effects of eugenol in a weight-drop induced rat model of TBI. Experimental procedure Rats were assigned into five groups; control and TBI groups pretreated with vehicle, and three TBI groups pretreated with different doses of eugenol (25, 50, and 100 mg/kg/day, p.o., seven consecutive days). Except for the control, all other groups were subjected to TBI using Marmarou’s weight-drop method. 24 h after TBI, locomotor functions and short term memory were evaluated. Lastly animals were scarified and the estimation of lipid peroxidation in brain tissue, blood-brain barrier (BBB) integrity, brain water content (brain edema) and histopathology of the brain tissue were performed. Results Weight-drop induced TBI caused functional disabilities in the rats as indicated by impairment in locomotor activities and short term memory. The TBI also resulted in augmented neuronal cell death designated by chromatolysis. The results also showed disruption in the BBB integrity, increased edema, and lipid peroxidation in the brain of the rats exposed to trauma. Pretreatment with eugenol (100 mg/kg) ameliorated histopathological, neurochemical, and behavioral consequences of trauma. Conclusion For the first time this study revealed that eugenol can be considered as a potential candidate for managing the functional disabilities associated with TBI because of its antioxidant activities. Eugenol pretreatment ameliorated the TBI induced disruption in the BBB integrity and increased brain edema in the rats. Eugenol pretreatment in rats mitigated the TBI induced increase in lipid peroxidation and chromatolysis. Eugenol pretreatment in rats reduced the TBI induced impairment in memory, locomotor activity, and motor coordination.
Collapse
Affiliation(s)
- Jeetprakash Barot
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| |
Collapse
|