1
|
Yin C, Mijiti X, Liu H, Wang Q, Cao B, Anwaierjiang A, Li M, Liu M, Jiang Y, Xu M, Wan K, Zhao X, Li G, Xiao H. Molecular Epidemiology of Clinical Mycobacterium tuberculosis Isolates from Southern Xinjiang, China Using Spoligotyping and 15-Locus MIRU-VNTR Typing. Infect Drug Resist 2023; 16:1313-1326. [PMID: 36919034 PMCID: PMC10008323 DOI: 10.2147/idr.s393192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Background In the last decades, the molecular epidemiological investigation of Mycobacterium tuberculosis has significantly increased our understanding of tuberculosis epidemiology. However, few such studies have been done in southern Xinjiang, China. We aimed to clarify the molecular epidemic characteristics and their association with drug resistance in the M. tuberculosis isolates circulating in this area. Methods A total of 347 isolates obtained from southern Xinjiang, China between Sep, 2017 and Sep, 2019 were included to characterize using a 15-locus MIRU-VNTR (VNTR-15China) typing and spoligotyping, and test for drug susceptibility profiles. Then the lineages and clustering of the isolates were analyzed, as well as their association with drug resistance. Results Spoligotyping results showed that 60 spoligotype international types (SITs) containing 35 predefined SITs and 25 Orphan or New patterns, and 12 definite genotypes were found, and the top three prevalent genotypes were Beijing genotype (207, 59.7%), followed by CAS1-Delhi (46, 13.6%), and Ural-2 (30, 8.6%). The prevalence of Beijing genotype infection in the younger age group (≤30) was more frequent than the two older groups (30~59 and ≥60 years old, both P values <0.05). The Beijing genotype showed significantly higher prevalence of resistance to isoniazid, rifampicin, ethambutol, multi-drug or at least one drug than the non-Beijing genotype (All P values ≤0.05). The estimated proportion of tuberculosis cases due to transmission was 18.4% according to the cluster rate acquired by VNTR-15China typing, and the Beijing genotype was the risk factor for the clustering (OR 9.15, 95% CI: 4.18-20.05). Conclusion Our data demonstrated that the Beijing genotype is the dominant lineage, associated with drug resistance, and was more likely to infect young people and contributed to tuberculosis transmission in southern Xinjiang, China. These findings will contribute to a better understanding of tuberculosis epidemiology in this area.
Collapse
Affiliation(s)
- Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Bin Cao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Public Health, University of South China, Hengyang, People's Republic of China
| | | | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
2
|
Lin S, Wei S, Zhao Y, Dai Z, Lin J, Pang Y. The Emergence of Novel Spoligotypes of Highly Drug-Resistant Mycobacterium tuberculosis Isolates in Fujian, China. Infect Drug Resist 2022; 15:5781-5793. [PMID: 36213768 PMCID: PMC9533782 DOI: 10.2147/idr.s380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Here, we aimed to determine the population structure of Mycobacterium tuberculosis (MTB) genotypes in Fujian and explore risk factors associated with infection with the Beijing genotype. We also explored the association between Beijing genotype and drug resistance. Methods Representative MTB isolates obtained during provincial-level routine anti-tuberculosis drug resistance surveillance conducted since 2013 in 11 Fujian counties were analyzed using McSpoligotyping. In vitro drug susceptibilities to anti-tuberculosis drugs were determined using the standard Löwenstein–Jensen proportion method. Results Overall, 477 MTB isolates were included in the study, of which 245 isolates belonged to the Beijing genotype family and 232 possessed non-Beijing genotypes. Ultimately, a total of 204 spoligotypes were identified that included 58 spoligotype international types (SITs) from the SITVITWEB database and 146 novel spoligotypes. As compared to patients <25 years of age (control group), elderly patients (≥65 years of age) were more likely to be infected with non-Beijing genotypes [aOR 18.69, 95% CI (5.80–60.26)], with risk of infection with non-Beijing genotypes increasing with age [aOR 3.73, 95% CI (1.67–8.30) for patients 45–64 years of age]. Additionally, as compared to isolates with Beijing and other non-Beijing genotypes, significantly greater proportions of isolates with novel spoligotypes exhibited PTO- and PAS-resistance. Moreover, a markedly higher proportion of isolates with novel spoligotypes exhibited OFX-resistance as compared to isolates with other non-Beijing genotypes. Conclusion Our data demonstrated that the Beijing genotype is the predominant MTB sublineage in Fujian and that the prevalence rate of infection with this MTB genotype decreases with advancing patient age. Notably, the prevalence rate of this genotype in Fujian TB patients is relatively lower than in other regions of China. In addition, the emergence of novel spoligotypes of highly drug-resistant MTB isolates highlights the urgent need for ongoing molecular genotyping surveillance in Fujian.
Collapse
Affiliation(s)
- Shufang Lin
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Shuzhen Wei
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
- Correspondence: Shuzhen Wei, Fujian Center for Disease Control and Prevention, No. 386, Chong’an Road, Jin’an District, Fuzhou, Fujian, 350012, People’s Republic of China, Tel/Fax +86 591 8343 1464, Email
| | - Yong Zhao
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Zhisong Dai
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Jian Lin
- Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, People’s Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
- Yu Pang, Beijing Chest Hospital, Capital Medical University, No. 97, Machang, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel/Fax +86 10 8950 9359, Email
| |
Collapse
|
3
|
Evaluation of the frequency of mutation genes in multidrug-resistant tuberculosis (MDR-TB) strains in Beijing, China. Epidemiol Infect 2021; 149:e21. [PMID: 33397543 PMCID: PMC8057498 DOI: 10.1017/s0950268820003131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at -15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (-15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
Collapse
|
4
|
Beijing genotype of Mycobacterium tuberculosis is less associated with drug resistance in south China. Int J Antimicrob Agents 2019; 54:766-770. [PMID: 31398482 DOI: 10.1016/j.ijantimicag.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis Beijing genotype strains are widespread globally. However, there has been no systematic study on the association between Beijing genotype and the characteristics of drug resistance. In this study, 359 M. tuberculosis isolates from south China were collected and their background information, genotype diversity and drug resistance was investigated. The results revealed that 66.0% of strains (237/359) were categorised as Beijing genotype. There was no statistical difference between Beijing and non-Beijing genotype strains in terms of patient sex, age, place of residence and treatment history. Drug resistance testing showed that 34.8% (125/359) of isolates were resistant to at least one of the seven drugs tested. The proportions of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis were 17.0% and 1.4%, respectively. Previously treated patients presented a significantly higher risk of developing drug resistance than new cases. Although the prevalence of drug resistance was higher in Beijing genotype than in non-Beijing genotype strains, there was no significant difference between these two genotypes in the multivariate analysis. Even in re-treated patients, the association of Beijing genotype with drug resistance was not significant. This study provides an insight into genotype diversity and demonstrates the characteristics of drug resistance in Beijing genotype strains, which will be useful in generating efficient tuberculosis prevention and control strategies in China.
Collapse
|
5
|
Feyisa SG, Abdurahman AA, Jimma W, Chaka EE, Kardan-Yamchi J, Kazemian H. Resistance of Mycobacterium tuberculosis strains to Rifampicin: A systematic review and meta-analysis. Heliyon 2019; 5:e01081. [PMID: 30619960 PMCID: PMC6314001 DOI: 10.1016/j.heliyon.2018.e01081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022] Open
Abstract
Introduction Antitubercular drug resistance strain is a horrifying barrier to effective TB treatment and prevention. The present study aimed to determine the prevalence and geographical distribution of rifampicin-resistance M. tuberculosis (MTB) strains. Methods We searched two electronic databases, PubMed and EMBASE, until 26 March 2017 and updated our search on 27 April 2018 and accessed all prevalence studies of MTB strain and their drug susceptibility patterns to rifampicin. The pooled prevalence estimate was determined using random effects model. Results We identified 23 studies satisfying the inclusion criteria. The proportion of rifampicin resistance strains was diverged depending on the type of strains, country and Regions. The pooled estimate of rifampicin-resistance strains of MTB for the included studies was 4% (95% CI: 3–5%). In subgroup analysis based on World Health Organization (WHO) Regions, the pooled estimate of rifampicin-resistance strains of MTB was 11% (95% CI: 9–13%) with the Western Pacific Region 24%, Europian Region 10%, South-East Asian Region 6%, African Region 3% and Region of American 1%. Beijing family was the most dominant strain resistance to rifampicin with pooled prevalence of 14% (95% CI: 10–18%). The pooled prevalence of other families, i.e. EAI, T, CAS, MANU, Haarlem, LAM and Ural, was ≤2% for each. Conclusion High burden of rifampicin resistance MTB strains was identified in the Western Pacific Region. Of these, Beijing family was predominantly resistance to rifampicin in Western Pacific Region and South-East Asian Region and also spread to European Region and Region of American.
Collapse
Affiliation(s)
- Seifu Gizaw Feyisa
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biology, College of Natural Sciences, Jimma University, Ethiopia
| | - Ahmed Abdulahi Abdurahman
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Worku Jimma
- Department of Health Information Management, School of School of Allied Medical Sciences, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Information Science, Jimma Institute of Technology, Jimma University, Ethiopia
| | - Eshetu Ejeta Chaka
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Public Health, College of Medical and Health Sciences, Ambo University, Ethiopia
| | - Jalil Kardan-Yamchi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Characterization of Mycobacterium tuberculosis strains in Beijing, China: drug susceptibility phenotypes and Beijing genotype family transmission. BMC Infect Dis 2018; 18:658. [PMID: 30547765 PMCID: PMC6295058 DOI: 10.1186/s12879-018-3578-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/03/2018] [Indexed: 11/16/2022] Open
Abstract
Background The most prevalent strains of Mycobacterium tuberculosis (M.tb) in Beijing belong to the Beijing genotype family. The influence of Beijing genotype prevalence on the development of drug resistance, and the association of infection with Beijing genotype M.tb with population characteristics, in Beijing, however, are still unclear. Methods In this retrospective study, 1189 isolates were subjected to drug susceptibility testing (DST) and molecular epidemiological analysis, and differences in the percentage of drug resistance between Beijing and non-Beijing genotype strains were compared. The association between the occurrence of drug resistance and the prevalence of Beijing genotype M.tb was analyzed using statistical methods. Results The Beijing genotype family was the dominant genotype (83.3%) among the 1189 M.tb isolates. Beijing genotype M.tb strains were more likely to spread among males [p = 0.018, OR (95% CI):1.127(1.004–1.264)] and people in the 45–64 age group [p = 0.016, OR (95% CI): 1.438 (1.027–2.015)]. On the contrary, non-Beijing genotype M.tb strains were more probably disseminated among the over 65 [p = 0.005, OR (95% CI):0.653 (0.474–0.9)] and non-resident population [p = 0.035, OR (95% CI):1.185(0.985–1.427)]. DST results showed that 849 (71.4%) strains were fully sensitive to first-line drugs, while 340 (28.6%) strains were resistant to at least one drug, and 9% (107/1189) were MDR-TB. The frequency of INH-resistance among Beijing genotype strains was significantly lower than that among non-Beijing genotype strains (p = 0.032). In addition, the Beijing genotype family readily formed clusters. Conclusions Our findings indicate that male and middle-aged people were more probably be infected by Beijing genotype M.tb, older people and non-residents were more probably be infected by non-Beijing genotype M.tb. The high percentage of resistance to INH occurring in non-Beijing genotype strains suggested that non-Beijing genotype strains should be given much more interest in Beijing. Electronic supplementary material The online version of this article (10.1186/s12879-018-3578-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Koster KJ, Largen A, Foster JT, Drees KP, Qian L, Desmond E, Wan X, Hou S, Douglas JT. Genomic sequencing is required for identification of tuberculosis transmission in Hawaii. BMC Infect Dis 2018; 18:608. [PMID: 30509214 PMCID: PMC6276198 DOI: 10.1186/s12879-018-3502-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Tuberculosis (TB) caused an estimated 1.4 million deaths and 10.4 million new cases globally in 2015. TB rates in the United States continue to steadily decline, yet rates in the State of Hawaii are perennially among the highest in the nation due to a continuous influx of immigrants from the Western Pacific and Asia. TB in Hawaii is composed of a unique distribution of genetic lineages, with the Beijing and Manila families of Mycobacterium tuberculosis (Mtb) comprising over two-thirds of TB cases. Standard fingerprinting methods (spoligotyping plus 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats [MIRU-VNTR] fingerprinting) perform poorly when used to identify actual transmission clusters composed of isolates from these two families. Those typing methods typically group isolates from these families into large clusters of non-linked isolates with identical fingerprints. Next-generation whole-genome sequencing (WGS) provides a new tool for molecular epidemiology that can resolve clusters of isolates with identical spoligotyping and MIRU-VNTR fingerprints. Methods We performed WGS and SNP analysis and evaluated epidemiological data to investigate 19 apparent TB transmission clusters in Hawaii from 2003 to 2017 in order to assess WGS’ ability to resolve putative Mtb clusters from the Beijing and Manila families. This project additionally investigated MIRU-VNTR allele prevalence to determine why standard Mtb fingerprinting fails to usefully distinguish actual transmission clusters from these two Mtb families. Results WGS excluded transmission events in seven of these putative clusters, confirmed transmission in eight, and identified both transmission-linked and non-linked isolates in four. For epidemiologically identified clusters, while the sensitivity of MIRU-VNTR fingerprinting for identifying actual transmission clusters was found to be 100%, its specificity was only 28.6% relative to WGS. We identified that the Beijing and Manila families’ significantly lower Shannon evenness of MIRU-VNTR allele distributions than lineage 4 was the cause of standard fingerprinting’s poor performance when identifying transmission in Beijing and Manila family clusters. Conclusions This study demonstrated that WGS is necessary for epidemiological investigation of TB in Hawaii and the Pacific. Electronic supplementary material The online version of this article (10.1186/s12879-018-3502-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Angela Largen
- Hawaii State Department of Health, Honolulu, HI, USA
| | - Jeffrey T Foster
- University of New Hampshire, Durham, NH, USA.,Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Lishi Qian
- University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ed Desmond
- California Department of Public Health, Richmond, CA, USA
| | - Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, HI, USA
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, HI, USA
| | - James T Douglas
- University of Hawaii at Manoa, Honolulu, HI, USA. .,Present Address: Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
8
|
The study on the association between Beijing genotype family and drug susceptibility phenotypes of Mycobacterium tuberculosis in Beijing. Sci Rep 2017; 7:15076. [PMID: 29118425 PMCID: PMC5678160 DOI: 10.1038/s41598-017-14119-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 12/29/2022] Open
Abstract
The predominant prevalent Mycobacterium tuberculosis (M. tb) lineage was the Beijing genotype family in Beijing. There has been no systematic study on the association between drug resistance and Beijing genotype. Here we collected 268 M. tb strains, analyzed the background information and the bacteriological characteristics. The mean age of the cases was 40.12 years; male patients were almost three times than female patients. After genotyping analyzation, 81.7% (219/268) strains were categorized as Beijing genotype; no significant difference was observed between Beijing and non-Beijing genotype in gender, age and treatment history. Drug susceptibility testing (DST) analyzation demonstrated that 172 (64.2%) strains were fully sensitive to all drugs (Isoniazid, Rifampin, Streptomycin, and Ethambutol), while 96 (35.8%) strains were resistant to at least one of the drugs. Beijing genotype strains exhibited a significantly higher clustering rate. However, no significant association relationship was observed between drug resistance and Beijing genotype family. The study provided insights into the genotype diversity and revealed that the frequencies of drug-resistance of Beijing genotype strains.It would be helpful for the establishment of the efficient tuberculosis (TB) prevention and control strategy in Beijing.
Collapse
|
9
|
Panwalkar N, Chauhan DS, Desikan P. Spoligotype defined lineages of Mycobacterium tuberculosis and drug resistance: Merely a casual correlation? Indian J Med Microbiol 2017; 35:27-32. [PMID: 28303814 DOI: 10.4103/0255-0857.202327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Drug-resistant tuberculosis (TB) is a major challenge to TB control strategy worldwide. Analysis of genetic polymorphism among drug resistant Mycobacterium tuberculosis (MTB) strains may help provide some insight into the transmission dynamics of these strains. Spoligotyping is a widely used technique to identify genetic polymorphism, based on 43 known spacers interspersed between direct repeat regions. Considerable work has been done in various parts of the world using this technique to identify and analyse the polymorphic nature of MTB. Many studies have been carried out to determine the association of drug resistance with spoligotype defined lineages, and much data has been produced over the years. New information continues to be generated. This review aims to put together the findings of relevant studies in an attempt to understand the correlation of drug resistance with spoligotype defined lineages of MTB. This would help provide a perspective of the available data that can be used as a starting point to understand the molecular epidemiology of drug resistant TB.
Collapse
Affiliation(s)
- Nikita Panwalkar
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| | - Devendra S Chauhan
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Indian Council of Medical Research, Agra, Uttar Pradesh, India
| | - Prabha Desikan
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
10
|
Chen L, Zhang H. Resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones. THE LANCET. INFECTIOUS DISEASES 2017; 17:24-25. [DOI: 10.1016/s1473-3099(16)30547-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
|
11
|
Liu Y, Tian M, Wang X, Wei R, Xing Q, Ma T, Jiang X, Li W, Zhang Z, Xue Y, Zhang X, Wang W, Wang T, Hong F, Zhang J, Wang S, Li C. Genotypic diversity analysis of Mycobacterium tuberculosis strains collected from Beijing in 2009, using spoligotyping and VNTR typing. PLoS One 2014; 9:e106787. [PMID: 25237849 PMCID: PMC4169523 DOI: 10.1371/journal.pone.0106787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
Background Tuberculosis (TB) is a serious problem in China. While there have been some studies on the nationwide genotyping of Mycobacterium tuberculosis (M. tuberculosis), there has been little detailed research in Beijing, the capital of China, which has a huge population. Here, M. tuberculosis clinical strains collected in Beijing during 2009 were genotyped by classical methods. Methodology/Principal Findings Our aim was to analyze the genetic diversity of M. tuberculosis strains within the Beijing metropolitan area. We characterized these strains using two standard methods, spoligotyping (n = 1585) and variable number of tandem repeat (VNTR) typing (n = 1053). We found that the most prominent genotype was Beijing family genotype. Other genotypes included the MANU, T and H families etc. Spoligotyping resulted in 137 type patterns, included 101 unclustered strains and 1484 strains clustered into 36 clusters. In VNTR typing analysis, we selected 12-locus (QUB-11b, MIRU10, Mtub21, MIRU 23, MIRU39, MIRU16, MIRU40, MIRU31, Mtub24, Mtub04, MIRU20, and QUB-4156c) and named it 12-locus (BJ) VNTR. VNTR resulted in 869 type patterns, included 796 unclustered strains and 257 strains clustered into 73 clusters. It has almost equal discriminatory power to the 24-locus VNTR. Conclusions/Significance Our study provides a detailed characterization of the genotypic diversity of M. tuberculosis in Beijing. Combining spoligotyping and VNTR typing to study the genotyping of M. tuberculosis gave superior results than when these techniques were used separately. Our results indicated that Beijing family strains were still the most prevalent M. tuberculosis in Beijing. Moreover, VNTR typing analyzing of M. tuberculosis strains in Beijing was successfully accomplished using 12-locus (BJ) VNTR. This method used for strains genotyping from the Beijing metropolitan area was comparable. This study will not only provide TB researchers with valuable information for related studies, but also provides guidance for the prevention and control of TB in Beijing.
Collapse
Affiliation(s)
- Yi Liu
- The Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Haidian District, Beijing, China; Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Miao Tian
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xueke Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Rongrong Wei
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Qing Xing
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Tizhuang Ma
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xiaoying Jiang
- Clinical Center on TB, China CDC, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Wensheng Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Zhiguo Zhang
- Beijing Changping Center for Tuberculosis Control and Prevention, Changping District, Beijing, PR China
| | - Yu Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Tao Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Feng Hong
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Junjie Zhang
- The Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Haidian District, Beijing, China
| | - Sumin Wang
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| |
Collapse
|
12
|
Jiao W, Liu Z, Han R, Zhao X, Dong F, Dong H, Huang H, Tian J, Li Q, Lian L, Yin Q, Song W, Wan K, Shen AD. A country-wide study of spoligotype and drug resistance characteristics of Mycobacterium tuberculosis isolates from children in China. PLoS One 2013; 8:e84315. [PMID: 24386365 PMCID: PMC3875490 DOI: 10.1371/journal.pone.0084315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is still a big threat to human health, especially in children. However, an isolation of Mycobacterium tuberculosis culture from pediatric cases remains a challenge. In order to provide some scientific basis for children TB control, we investigated the genotyping and drug resistance characteristics of M. tuberculosis isolates from pediatric cases in China. METHODOLOGY/PRINCIPAL FINDINGS In this study, a total of 440 strains including 90 from children (<15 years), 159 from adolescents (15-18 years) and 191 from adults (>18 years) isolated in 25 provinces across China were subjected to spoligotyping and drug susceptibility testing. As a result, Beijing family strains were shown to remain predominant in China (85.6%, 81.1% and 75.4% in three above groups, respectively), especially among new children cases (91.0% vs. 69.6% in previously treated cases, P=0.03). The prevalence of the Beijing genotype isolates was higher in northern and central China in the total collection (85.1% in northern and 83.9% in central vs. 61.6% in southern China, P<0.001) and a similar trend was seen in all three age groups (P=0.708, <0.001 and 0.025, respectively). In adolescents, the frequencies of isoniazid (INH)-resistant and ethambutol (EMB)-resistant isolates were significantly higher among Beijing strains compared to non-Beijing genotype strains (P=0.028 for INH and P=0.027 for EMB). Furthermore, strong association was observed between resistance to rifampicine (RIF), streptomycin (STR) and multidrug resistance (MDR) among Beijing compared to non-Beijing strains in previously treated cases of children (P=0.01, 0.01 and 0.025, respectively). CONCLUSION/SIGNIFICANCE Beijing family was more prevalent in northern and central China compared to southern China and these strains were predominant in all age groups. The genetic diversity of M. tuberculosis isolates from children was similar to that found in adolescents and adults. Beijing genotype was associated with RIF, STR and MDR resistance in previously treated children.
Collapse
Affiliation(s)
- Weiwei Jiao
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zhiguang Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Rui Han
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Fang Dong
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Haiyan Dong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Hairong Huang
- National Tuberculosis Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jianling Tian
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Qinjing Li
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Lulu Lian
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Qingqin Yin
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Wenqi Song
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Kanglin Wan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- * E-mail: (AS); (KW)
| | - A-dong Shen
- Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- * E-mail: (AS); (KW)
| |
Collapse
|
13
|
Zhang L, Xu W, Cui Z, Liu Y, Wang W, Wang J, Hu D, Liu D, Wang H. A novel method of identifying Mycobacterium tuberculosis Beijing strains by detecting SNPs in Rv0444c and Rv2629. Curr Microbiol 2013; 68:381-6. [PMID: 24218231 DOI: 10.1007/s00284-013-0487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/22/2013] [Indexed: 11/28/2022]
Abstract
A particular genotype of tuberculosis, named Beijing strain, is strongly associated with drug resistance and high virulence. Therefore, rapid prospective identification of Mycobacterium tuberculosis Beijing strains is very important for identifying and controlling tuberculosis of Beijing genotype. In the present study, we found that the co-mutation, A191C in Rv2629 and G243C in Rv0444c, is closely related to Beijing genotype. Gene Rv2629 and Rv0444c of 139 clinical isolates of M. tuberculosis were analyzed by PCR amplification and sequencing. Among 99 Beijing strains, 86 % (n = 85) isolates had the mutation G243C in Rv0444c and 92.93 % (n = 92) isolates had the mutation A191C in Rv2629. Among 40 non-Beijing isolates, only six isolates carried the mutation G243C in Rv0444c and eight isolates carried the mutation A191C in Rv2629. The co-mutation existed in 84.85 % (n = 84) of 99 clinical genome samples of W-Beijing strains and in only 12.5 % (n = 5) of the 40 non-Beijing strains, and the positive predictive value of 94.38 %, obtained in our experiment with a designed ratio of Beijing isolates, is similar to that in China at present. This result suggested that the detection method of the co-mutation, A191C in Rv2629 and G243C in Rv0444c, proposed in this study was a rapid, reliable, and sensitive one for identifying tuberculosis with Beijing genotype.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal. PLoS One 2012; 7:e52297. [PMID: 23300635 PMCID: PMC3530561 DOI: 10.1371/journal.pone.0052297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 11/30/2022] Open
Abstract
Background Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. Methods and Findings We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42–4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43–5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. Conclusions We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian region.
Collapse
|
15
|
Genetic diversity and drug susceptibility of Mycobacterium tuberculosis isolates from Zunyi, one of the highest-incidence-rate areas in China. J Clin Microbiol 2012; 50:1043-7. [PMID: 22205809 DOI: 10.1128/jcm.06095-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis isolates from Zunyi were found more diversified but clustered less frequently to the Beijing family compared to isolates from other areas of China. These observations, on top of the fact that the Zunyi area has a high prevalence of multidrug-resistant tuberculosis (MDR-TB), support the notion that Beijing family isolates may not be linked to MDR-TB.
Collapse
|
16
|
Evaluation of Mycobacterium tuberculosis typing methods in a 4-year study in Schleswig-Holstein, Northern Germany. J Clin Microbiol 2011; 49:4173-8. [PMID: 21998434 DOI: 10.1128/jcm.05293-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to evaluate the discriminatory power of different methods for genotyping of Mycobacterium tuberculosis complex (MTBC) isolates, we compared the performance of (i) IS6110 DNA fingerprint typing, (ii) spoligotyping, and (iii) 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing in a long-term study on the epidemiology of tuberculosis (TB) in Schleswig-Holstein, the northernmost federal state of Germany. In total, we analyzed 277 MTBC isolates collected from patients between the years 2006 and 2010. The collection comprised a broad spectrum of 13 different genotypes, among which strains of the Haarlem genotype (31%) were most prominent, followed by strains belonging to the Delhi and Beijing lineages (7% and 6%, respectively). On the basis of IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping analyses, 211 isolates had unique patterns (76%) and 66 isolates (24%) were in 20 clusters. MIRU-VNTR combined with spoligotyping analyses revealed 202 isolates with unique patterns (73%) and 75 isolates in 18 clusters (27%). Overall, there was 93.1% concordance between the typing results obtained; 198 strains were identified as unique, and 60 isolates were clustered by both typing combinations (including all 31 isolates with confirmed epidemiological links). Of the remaining 19 isolates with discrepant results, 15 were falsely clustered by MIRU-VNTR (six Beijing genotype strains) and four were clustered by IS6110 RFLP (low IS6110 copy number) only. In conclusion, in the study population investigated, a minority of isolates, especially of the Beijing genotype, clustered by standard 24-loci MIRU-VNTR and without an obvious epidemiological link may require second-line typing by IS6110 RFLP or hypervariable MIRU-VNTR loci.
Collapse
|