1
|
Wang J, Xu RM, Cao QM, Ma BC, Zhang H, Hao HP. Mechanism of DYRK1a in myocardial ischemia-reperfusion injury by regulating ferroptosis of cardiomyocytes. Kaohsiung J Med Sci 2023; 39:1190-1199. [PMID: 37702441 DOI: 10.1002/kjm2.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
This study aimed to explore the role and mechanism of DYRK1a regulating ferroptosis of cardiomyocytes during myocardial ischemia-reperfusion injury (MIRI). H9c2 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) were used as MIRI cell models and transfected with sh-DYRK1a or/and erastin. Cell viability, apoptosis, and DYRK1a mRNA/protein expression were measured accordingly. The levels of reactive oxygen species (ROS), iron, malondialdehyde (MDA), and glutathione (GSH) were determined. The expression of ferroptosis-related proteins (GPX4, SLC7A11, ACSL4, and TFR1) was detected using western blotting. The MIRI rat model was established to explore the possible role of DYRK1a suppression in cell injury and ferroptosis. OGD/R cells showed elevated mRNA and protein expression for DYRK1a. OGD/R cells transfected with sh-DYRK1a showed elevated cell viability, GSH content, increased GPX4 and SLC7A11 expression, suppressed iron content, MDA, ROS, ACSL4, and TFR1 expression, and reduced apoptosis rate, whereas co-transfection of sh-DYRK1a with erastin reversed the attenuation of sh-DYRK1a on MIRI. The suppressive effect of sh-DYRK1a on MI/R injury was confirmed in an MIRI rat model. DYRK1a mediates ferroptosis of cardiomyocytes to deteriorate MIRI progression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Rui-Ming Xu
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Qiu-Mei Cao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Bing-Chen Ma
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Hao Zhang
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Hua-Peng Hao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell Mol Neurobiol 2023; 43:3943-3963. [PMID: 37819608 PMCID: PMC10661812 DOI: 10.1007/s10571-023-01417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Extensive research has been conducted to gain a deeper understanding of the deregulated metabolic pathways in the development of trisomy 21 (T21) or Down syndrome. This research has shed light on the hypothesis that oxidative stress plays a significant role in the manifestation of the T21 phenotype. Although in vivo studies have shown promising results in mitigating the detrimental effects of oxidative stress, there is currently a lack of introduced antioxidant treatment options targeting cognitive impairments associated with T21. To address this gap, a comprehensive literature review was conducted to provide an updated overview of the involvement of oxidative stress in T21. The review aimed to summarize the insights into the pathogenesis of the Down syndrome phenotype and present the findings of recent innovative research that focuses on improving cognitive function in T21 through various antioxidant interventions. By examining the existing literature, this research seeks to provide a holistic understanding of the role oxidative stress plays in the development of T21 and to explore novel approaches that target multiple aspects of antioxidant intervention to improve cognitive function in individuals with Down syndrome. The guides -base systematic review process (Hutton et al. 2015).
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, ul. Sklodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Białystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| |
Collapse
|
3
|
Tan S, Zhao J, Wang P. DYRK1A-mediated PLK2 phosphorylation regulates the proliferation and invasion of glioblastoma cells. Int J Oncol 2023; 63:94. [PMID: 37387444 PMCID: PMC10552692 DOI: 10.3892/ijo.2023.5542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Polo-like kinases (PLKs) are a family of serine-threonine kinases that exert regulatory effects on diverse cellular processes. Dysregulation of PLKs has been implicated in multiple cancers, including glioblastoma (GBM). Notably, PLK2 expression in GBM tumor tissue is lower than that in normal brains. Notably, high PLK2 expression is significantly correlated with poor prognosis. Thus, it can be inferred that PLK2 expression alone may not be sufficient for accurate prognosis evaluation, and there are unknown mechanisms underlying PLK2 regulation. In the present study, it was demonstrated that dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) interacts with and phosphorylates PLK2 at Ser358. DYRK1A-mediated phosphorylation of PLK2 increases its protein stability. Moreover, PLK2 kinase activity was markedly induced by DYRK1A, which was exemplified by the upregulation of alpha-synuclein S129 phosphorylation. Furthermore, it was found that phosphorylation of PLK2 by DYRK1A contributes to the proliferation, migration and invasion of GBM cells. DYRK1A further enhances the inhibition of the malignancy of GBM cells already induced by PLK2. The findings of the present study indicate that PLK2 may play a crucial role in GBM pathogenesis partially in a DYRK1A-dependent manner, suggesting that PLK2 Ser358 may serve as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Zhao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| |
Collapse
|
4
|
Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Comput Struct Biotechnol J 2022; 20:3734-3754. [PMID: 35891784 PMCID: PMC9294202 DOI: 10.1016/j.csbj.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein seldom performs biological activities in isolation. Understanding the protein–protein interactions’ physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery’s relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.
Collapse
Key Words
- ASK1
- ASK1, Apoptosis signal-regulating kinase 1
- CFLAR, CASP8 and FADD-like apoptosis regulator
- CREG, Cellular repressor of E1A-stimulated genes
- DKK3, Dickkopf-related protein 3
- Interaction fingerprint
- NAFLD, Non-alcoholic fatty liver disease
- NASH
- NASH, Nonalcoholic steatohepatitis
- PPI, Protein-protein interaction
- PTM, Post-trancriptional modification
- PTMs
- Protein-protein interaction
- TNFAIP3, TNF Alpha Induced Protein 3
- TRAF2/6, Tumor necrosis factor receptor (TNFR)-associated factor2/6
- TRIM48, Tripartite Motif Containing 48
- TRX, Thioredoxin
- USP9X, Ubiquitin Specific Peptidase 9 X-Linked
Collapse
|
5
|
Araldi GL, Hwang YW. Design, synthesis, and biological evaluation of polyphenol derivatives as DYRK1A inhibitors. The discovery of a potentially promising treatment for Multiple Sclerosis. Bioorg Med Chem Lett 2022; 64:128675. [PMID: 35292341 PMCID: PMC9067539 DOI: 10.1016/j.bmcl.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Green tea and its natural components are known for their usefulness against a variety of diseases. In particular, the activity of main catechin Epigallocatechin gallate (EGCG) against Dual-specificity tyrosine-(Y)-phosphorylation Regulated Kinase-1A (DYRK1A) has been reported; here we are showing a structure-activity relationship (SAR) for EGCG against this molecular target. We have studied the influence of all four rings on the activity and the nature of its absolute geometry. This work has led to the identification of the more potent and stable trans fluoro-catechin derivative 1f (IC50 = 35 nM). This molecule together with a novel delivery method showed good efficacy in vivo when tested in a validated model of multiple sclerosis (EAE).
Collapse
Affiliation(s)
- Gian Luca Araldi
- Avanti Biosciences, Inc. 3210 Merryfield Row, San Diego, CA 92121, United States.
| | - Yu-Wen Hwang
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, United States
| |
Collapse
|
6
|
Liu T, Wang Y, Wang J, Ren C, Chen H, Zhang J. DYRK1A inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2022; 229:114062. [PMID: 34954592 DOI: 10.1016/j.ejmech.2021.114062] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is a conserved protein kinase that plays essential roles in various biological processes. It is located in the region q22.2 of chromosome 21, which is involved in the pathogenesis of Down syndrome (DS). Moreover, DYRK1A has been shown to promote the accumulation of amyloid beta (Aβ) peptides leading to gradual Tau hyperphosphorylation, which contributes to neurodegeneration. Additionally, alterations in the DRK1A expression are also associated with cancer and diabetes. Recent years have witnessed an explosive increase in the development of DYRK1A inhibitors. A variety of novel DYRK1A inhibitors have been reported as potential treatments for human diseases. In this review, the latest therapeutic potential of DYRK1A for different diseases and the novel DYRK1A inhibitors discoveries are summarized, guiding future inhibitor development and structural optimization.
Collapse
Affiliation(s)
- Tong Liu
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Targeted Tracer Research and development laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Institute for Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
JNK Signaling in Drosophila Aging and Longevity. Int J Mol Sci 2021; 22:ijms22179649. [PMID: 34502551 PMCID: PMC8431792 DOI: 10.3390/ijms22179649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved c-Jun N-terminal kinase (JNK) signaling pathway is a critical genetic determinant in the control of longevity. In response to extrinsic and intrinsic stresses, JNK signaling is activated to protect cells from stress damage and promote survival. In Drosophila, global JNK upregulation can delay aging and extend lifespan, whereas tissue/organ-specific manipulation of JNK signaling impacts lifespan in a context-dependent manner. In this review, focusing on several tissues/organs that are highly associated with age-related diseases-including metabolic organs (intestine and fat body), neurons, and muscles-we summarize the distinct effects of tissue/organ-specific JNK signaling on aging and lifespan. We also highlight recent progress in elucidating the molecular mechanisms underlying the tissue-specific effects of JNK activity. Together, these studies highlight an important and comprehensive role for JNK signaling in the regulation of longevity in Drosophila.
Collapse
|
8
|
Shen J, Zhang P, Li Y, Fan C, Lan T, Wang W, Yu SY. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours. J Cell Mol Med 2021; 25:7028-7038. [PMID: 34121317 PMCID: PMC8278121 DOI: 10.1111/jcmm.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Findings from recent studies have revealed that microRNAs (miRNAs) are related to numerous neurological disorders. However, whether miRNAs regulate neuronal anomalies involved in the pathogenesis of depression remain unclear. In the present study, we screened miRNA expression profiles in the CA1 hippocampus of a rat model of depression and found that a specific miRNA, microRNA-211-5p, was significantly down-regulated in depressed rats. When miR-211-5p was up-regulated in these rats, neuronal apoptosis within the CA1 area was suppressed, effects which were accompanied with an amelioration of depression-like behaviours in these rats. These neuroprotective effects of miR-211-5p in depressed rats appear to result through suppression of the Dyrk1A/ASK1/JNK signalling pathway within the CA1 area. In further support of this proposal are the findings that knock-down of miR-211-5p within the CA1 area of normal rats activated the Dyrk1A/ASK1/JNK pathway, resulting in the promotion of neuronal apoptosis and display of depression-like behaviours in these rats. Taken together, these results demonstrate that deficits in miR-211-5p contribute to neuronal apoptosis and thus depression-like behaviours in rats. Therefore, the miR-211-5p/Dyrk1A pathway may be critically involved in the pathogenesis of depression and serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Jie Shen
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Ping Zhang
- Department of NeurosurgeryQilu Hospital of Shandong UniversityJinanChina
| | - Ye Li
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Cuiqin Fan
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Tian Lan
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Wang
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Shu Yan Yu
- Department of PhysiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
- Shandong Key Laboratory of Mental DisordersSchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
9
|
Demyanenko SV, Uzdensky A. LIM kinase inhibitor T56-LIMKi protects mouse brain from photothrombotic stroke. Brain Inj 2021; 35:490-500. [PMID: 33523710 DOI: 10.1080/02699052.2021.1879397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary Objective: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. Research Design: We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain. Methods and Procedures: Photothrombotic stroke was induced by laser irradiation of mouse cortex after administration of photosensitizer Bengal Rose, which does not penetrate cells and remains in blood vessels. Under light exposure, it induces vessel occlusion. Infarct volume and histological changes in the cerebral cortex were evaluated 3, 7 and 14 days after photothrombotic impact. Main Outcomes and Results: Harmine and 4-chlorophenylalanine did not influence infarct volume and morphology of peri-infarct area in the mouse brain cortex after photothrombotic stroke. However, LIMK2 inhibitor T56-LIMKi significantly reduced infarct volume 7 and 14 days after photothrombotic stroke. It also increased the percent of normochromic neurons and decreased the fraction of altered cortical cells (hypochromic, hyperchromic and pyknotic neurons). Conclusions: T56-LIMK2i may be considered as a promising anti-stroke agent.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
10
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
11
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
12
|
Melchior B, Mittapalli GK, Lai C, Duong‐Polk K, Stewart J, Güner B, Hofilena B, Tjitro A, Anderson SD, Herman DS, Dellamary L, Swearingen CJ, Sunil K, Yazici Y. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer's disease. Aging Cell 2019; 18:e13000. [PMID: 31267651 PMCID: PMC6718548 DOI: 10.1111/acel.13000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A) is known to phosphorylate the microtubule-associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK-3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell-based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose-dependent reduction of transient hypothermia-induced phosphorylated tau in the brains of wild-type mice compared to vehicle (47%, p < 0.001). Long-term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau-positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire-hang test compared to vehicle-treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain-penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.
Collapse
|
13
|
Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, Chen YJ, Lin YW, Hsu CC, Chen YL, Lu CS, Wang HL. Upregulated Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front Cell Neurosci 2019; 13:399. [PMID: 31572127 PMCID: PMC6753175 DOI: 10.3389/fncel.2019.00399] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRs) downregulate or upregulate the mRNA level by binding to the 3′-untranslated region (3′UTR) of target gene. Dysregulated miR levels can be used as biomarkers of Parkinson’s disease (PD) and could participate in the etiology of PD. In the present study, 45 brain-enriched miRs were evaluated in serum samples from 50 normal subjects and 50 sporadic PD patients. The level of miR-204-5p was upregulated in serum samples from PD patients. An upregulated level of miR-204-5p was also observed in the serum and substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Expression of miR-204-5p increased the level of α-synuclein (α-Syn), phosphorylated (phospho)-α-Syn, tau, or phospho-tau protein and resulted in the activation of endoplasmic reticulum (ER) stress in SH-SY5Y dopaminergic cells. Expression of miR-204-5p caused autophagy impairment and activation of c-Jun N-terminal kinase (JNK)-mediated apoptotic cascade in SH-SY5Y dopaminergic cells. Our study using the bioinformatic method and dual-luciferase reporter analysis suggests that miR-204-5p positively regulates mRNA expression of dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) by directly interacting with 3′UTR of DYRK1A. The mRNA and protein levels of DYRK1A were increased in SH-SY5Y dopaminergic cells expressing miR-204-5p and SN of MPTP-induced PD mouse model. Knockdown of DYRK1A expression or treatment of the DYRK1A inhibitor harmine attenuated miR-204-5p-induced increase in protein expression of phospho-α-Syn or phospho-tau, ER stress, autophagy impairment, and activation of JNK-mediated apoptotic pathway in SH-SY5Y dopaminergic cells or primary cultured dopaminergic neurons. Our results suggest that upregulated expression of miR-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated ER stress and apoptotic signaling cascade.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hua-Chien Chen
- Genomic Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
14
|
Naert G, Ferré V, Keller E, Slender A, Gibbins D, Fisher EMC, Tybulewicz VLJ, Maurice T. In vivo and ex vivo analyses of amyloid toxicity in the Tc1 mouse model of Down syndrome. J Psychopharmacol 2018; 32:174-190. [PMID: 29215943 PMCID: PMC5815426 DOI: 10.1177/0269881117743484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RATIONALE The prevalence of Alzheimer's disease is increased in people with Down syndrome. The pathology appears much earlier than in the general population, suggesting a predisposition to develop Alzheimer's disease. Down syndrome results from trisomy of human chromosome 21, leading to overexpression of possible Alzheimer's disease candidate genes, such as amyloid precursor protein gene. To better understand how the Down syndrome context results in increased vulnerability to Alzheimer's disease, we analysed amyloid-β [25-35] peptide toxicity in the Tc1 mouse model of Down syndrome, in which ~75% of protein coding genes are functionally trisomic but, importantly, not amyloid precursor protein. RESULTS Intracerebroventricular injection of oligomeric amyloid-β [25-35] peptide in three-month-old wildtype mice induced learning deficits, oxidative stress, synaptic marker alterations, activation of glycogen synthase kinase-3β, inhibition of protein kinase B (AKT), and apoptotic pathways as compared to scrambled peptide-treated wildtype mice. Scrambled peptide-treated Tc1 mice presented high levels of toxicity markers as compared to wildtype mice. Amyloid-β [25-35] peptide injection in Tc1 mice induced significant learning deficits and enhanced glycogen synthase kinase-3β activity in the cortex and expression of apoptotic markers in the hippocampus and cortex. Interestingly, several markers, including oxidative stress, synaptic markers, glycogen synthase kinase-3β activity in the hippocampus and AKT activity in the hippocampus and cortex, were unaffected by amyloid-β [25-35] peptide injection in Tc1 mice. CONCLUSIONS Tc1 mice present several toxicity markers similar to those observed in amyloid-β [25-35] peptide-treated wildtype mice, suggesting that developmental modifications in these mice modify their response to amyloid peptide. However, amyloid toxicity led to severe memory deficits in this Down syndrome mouse model.
Collapse
Affiliation(s)
- Gaëlle Naert
- INSERM U1198, Montpellier, France
- EPHE, Paris, France
| | | | | | | | | | | | | | - Tangui Maurice
- INSERM U1198, Montpellier, France
- EPHE, Paris, France
- Tangui Maurice, INSERM U1198, University of Montpellier, CC105, Place Eugene Bataillon, Montpellier Cedex 5, 34095, France.
| |
Collapse
|
15
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
16
|
Demyanenko SV, Panchenko SN, Uzdensky AB. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. BIOCHEMISTRY (MOSCOW) 2016; 80:790-9. [PMID: 26531025 DOI: 10.1134/s0006297915060152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.
Collapse
Affiliation(s)
- S V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | | |
Collapse
|
17
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
18
|
Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A. Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex. Mol Neurobiol 2016; 54:4172-4188. [PMID: 27324898 DOI: 10.1007/s12035-016-9964-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
After ischemic stroke, cell damage propagates from infarct core to surrounding tissues (penumbra). To reveal proteins involved in neurodegeneration and neuroprotection in penumbra, we studied protein expression changes in 2-mm ring around the core of photothrombotic infarct induced in the rat brain cortex by local laser irradiation after administration of Bengal Rose. The ultrastructural study showed edema and degeneration of neurons, glia, and capillaries. Morphological changes gradually decreased across the penumbra. Using the antibody microarrays, we studied changes in expression of >200 neuronal proteins in penumbra 4 or 24 h after focal photothrombotic infarct. Diverse cellular subsystems were involved in the penumbra tissue response: signal transduction pathways such as protein kinase Bα/GSK-3, protein kinase C and its β1 and β2 isoforms, Wnt/β-catenin (axin1, GSK-3, FRAT1), Notch/NUMB, DYRK1A, TDP43; mitochondria quality control (Pink1, parkin, HtrA2); ubiquitin-mediated proteolysis (ubiquilin-1, UCHL1); axon outgrowth and guidance (NAV-3, CRMP2, PKCβ2); vesicular trafficking (syntaxin-8, TMP21, Munc-18-3, synip, ALS2, VILIP1, syntaxin, synaptophysin, synaptotagmin); biosynthesis of neuromediators (tryptophan hydroxylase, monoamine oxidase B, glutamate decarboxylase, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter); intercellular interactions (N-cadherin, PMP22); cytoskeleton (neurofilament 68, neurofilament-M, doublecortin); and other proteins (LRP1, prion protein, β-amyloid). These proteins are involved in neurodegeneration or neuroprotection. Such changes were most expressed 4 h after photothrombotic impact. Immunohistochemical and Western blot studies of expression of monoamine oxidase B, UCHL1, DYRK1A, and Munc-18-3 confirmed the proteomic data. These data provide the integral view on the penumbra response to photothrombotic infarct. Some of these proteins can be potential targets for ischemic stroke therapy.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| | - Grigory Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.,Institute of Arid Zones, Southern Scientific Center of Russian Academy of Sciences, 41 Chekhov prosp., Rostov-on-Don, 344006, Russia
| | - Tayana Lapteva
- Regional Consulting and Diagnostic Center, 127 Pushkinskaya st., Rostov-on-Don, 344010, Russia
| | - Alexej Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| |
Collapse
|
19
|
Naert G, Ferré V, Meunier J, Keller E, Malmström S, Givalois L, Carreaux F, Bazureau JP, Maurice T. Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Aβ25-35 peptide administration in mice. Eur Neuropsychopharmacol 2015; 25:2170-82. [PMID: 26381812 DOI: 10.1016/j.euroneuro.2015.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/10/2015] [Accepted: 03/22/2015] [Indexed: 01/07/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) are implicated in the onset and progression of Down syndrome (DS) and Alzheimer's disease (AD). DYRK1A has emerged as a possible link between amyloid-β (Aβ) and Tau, the major pathological proteins in AD. We here assessed the neuroprotective potential of a novel inhibitor of DYRKs/CLKs. The Leucettine L41, acting preferentially on DYRK1A, was tested in Aβ25-35-treated mice, a nontransgenic model of AD-like toxicity. We co-injected intracerebroventricularly oligomeric Aβ25-35 peptide and L41 in Swiss male mice. After 7 days, they were submitted to behavioral tests addressing spatial and non-spatial, short- and long-term memories. The oxidative stress, apoptotic markers, kinases involved in Tau phosphorylation, and synaptic integrity were analyzed by Western blot and ELISA in the hippocampus. L41, tested at 0.4, 1.2, 4 µg, prevented the Aβ25-35-induced memory deficits in the Y-maze, passive avoidance and water-maze tests, with the most active dose being 4 µg. The inhibitor prevented the Aβ25-35-induced oxidative stress, as revealed by measures of lipid peroxidation levels and reactive oxygen species accumulation, and abolished Aβ25-35-induced expression of pro-apoptotic markers. L41 prevented the Aβ25-35-induced decrease of AKT activation and increase of glycogen synthase kinase-3β (GSK-3β) activation, resulting in a decrease of Tau phosphorylation. Finally, L41 restored Aβ25-35-reduced levels of synaptic markers. The novel DYRK1A-preferential inhibitor L41 therefore prevented Aβ25-35-induced memory impairments and neurotoxicity in the mouse hippocampus. These in vivo data highlighted particularly DYRK1A as a major kinase involved in Aβ pathology and suggested therapeutic developments for DYRK1A inhibitors in AD.
Collapse
Affiliation(s)
- Gaëlle Naert
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France; Amylgen, 2196, boulevard de la Lironde, Montferrier-sur-Lez 34980, France
| | - Valentine Ferré
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Johann Meunier
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France; Amylgen, 2196, boulevard de la Lironde, Montferrier-sur-Lez 34980, France
| | - Emeline Keller
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France; Amylgen, 2196, boulevard de la Lironde, Montferrier-sur-Lez 34980, France
| | - Susanna Malmström
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France; Amylgen, 2196, boulevard de la Lironde, Montferrier-sur-Lez 34980, France
| | - Laurent Givalois
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - François Carreaux
- Université Rennes, CNRS UMR 6226, Campus de Beaulieu, Bat. 10A, 10C, Avenue du Général Leclerc, Rennes Cedex 35042, France
| | - Jean-Pierre Bazureau
- Université Rennes, CNRS UMR 6226, Campus de Beaulieu, Bat. 10A, 10C, Avenue du Général Leclerc, Rennes Cedex 35042, France
| | - Tangui Maurice
- Université Montpellier, INSERM U. 1198, place Eugène Bataillon, Montpellier Cedex 5 34095, France; Amylgen, 2196, boulevard de la Lironde, Montferrier-sur-Lez 34980, France.
| |
Collapse
|
20
|
Smith B, Medda F, Gokhale V, Dunckley T, Hulme C. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's? ACS Chem Neurosci 2012; 3:857-72. [PMID: 23173067 PMCID: PMC3503344 DOI: 10.1021/cn300094k] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
With 24.3 million people affected in 2005 and an estimated rise to 42.3 million in 2020, dementia is currently a leading unmet medical need and costly burden on public health. Seventy percent of these cases have been attributed to Alzheimer's disease (AD), a neurodegenerative pathology whose most evident symptom is a progressive decline in cognitive functions. Dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) is important in neuronal development and plays a variety of functional roles within the adult central nervous system. The DYRK1A gene is located within the Down syndrome critical region (DSCR) on human chromosome 21 and current research suggests that overexpression of DYRK1A may be a significant factor leading to cognitive deficits in people with Alzheimer's disease (AD) and Down syndrome (DS). Currently, treatment options for cognitive deficiencies associated with Down syndrome, as well as Alzheimer's disease, are extremely limited and represent a major unmet therapeutic need. Small molecule inhibition of DYRK1A activity in the brain may provide an avenue for pharmaceutical intervention of mental impairment associated with AD and other neurodegenerative diseases. We herein review the current state of the art in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Breland Smith
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Federico Medda
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Vijay Gokhale
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Travis Dunckley
- Neurogenomics Division, Translational
Genomics Research Institute, Phoenix,
Arizona 85013, United States
| | - Christopher Hulme
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
21
|
Guo Y, Xu X, Liu Z, Zhang T, Zhang X, Wang L, Wang M, Liu Y, Lu Y, Liu Y, Quan C. Apoptosis signal-regulating kinase 1 is associated with the effect of claudin-6 in breast cancer. Diagn Pathol 2012; 7:111. [PMID: 22925655 PMCID: PMC3487933 DOI: 10.1186/1746-1596-7-111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies have demonstrated that claudin-6 functions as a cancer suppressor in human MCF-7 breast cancer cells. The growth inhibitory effect could be attributed to inhibition of cell proliferation and induction of apoptosis. The purpose of the current study was to examine the involvement of apoptosis signal-regulating kinase 1 (ASK1) in the anticancer effect of claudin-6. Methods Immunohistochemical analysis was performed to evaluate the ASK1 protein expression and the correlation between ASK1, claudin-6 and clinicopathological features in 85 samples of breast invasive ductal carcinomas (IDC). Western blotting and RT-PCR was carried out to examine the expression of ASK1 and claudin-6 in MCF-7 cell clones transfected with claudin-6. Results Immunohistochemical analysis showed that ASK1 expression was significantly related with that of claudin-6 in breast invasive ductal carcinomas (P < 0.05). In addition, a positive correlation between ASK1 and C-erb B 2 protein expression was identified (P < 0.05). Western blotting and RT-PCR consistently revealed that the level of ASK1 protein and mRNA was upregulated in MCF-7 cell clones transfected with claudin-6. Conclusions Our data suggests, for the first time, that the ASK1 signal may play a positive role in the inhibitory effect of claudin-6 in breast cancer. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1200314318763661
Collapse
Affiliation(s)
- Yaxiong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, Beyuthune Medical College, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|