1
|
Delaney LJ, Machado P, Liu JB, Evans R, Winslow A, Zhao N, Kepler CK, Narayanan R, Ezeonu T, Soni V, Kaushal G, Hilliard R, Schaer TP, Hickok NJ, Forsberg F. Ultrasound-triggered release of vancomycin from a novel spinal device: Antibiotic release and efficacy in vivo. Int J Pharm 2025; 671:125276. [PMID: 39875035 DOI: 10.1016/j.ijpharm.2025.125276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Post-surgical spinal infection occurs in up to 20 % of patients, despite aggressive peri-operative antibiotic treatments. To improve prophylaxis, we have designed and evaluated an ultrasound-activated prophylactic antibiotic release system to combat post-surgical bacterial survival. Polylactic acid (PLA) clips (1 cm3) were 3D-printed with an interior reservoir (0.8 cm3) for carrying drug payload, specifically vancomycin (VAN). Under IACUC approval, clips were surgically implanted into the spines of sheep (n = 9) and swine (n = 2) by removing the spinous process at several levels of the lumbar spine. In the sheep, clips were insonated and the interstitial wound fluid was collected to quantify the ultrasound-triggered VAN release. Uninsonated control sheep exhibited an average VAN concentration of 6.32 ± 5.99 µg/mL after 72 h, while ultrasound-triggered clips released significantly higher VAN concentrations at 72 h (22.98 ± 11.22 µg/mL, p = 0.033). In the swine, device efficacy against Staphylococcus aureus was evaluated. Insonated sites saw significant reduction in colony forming units (CFU) to 4.3 ± 3.2 CFU in the activated clips, compared to uninsonated controls where bacterial colonization was higher (2898 ± 1214 CFU, p = 0.017). Overall, these results demonstrate the ability to non-invasively release VAN from an implanted reservoir in vivo, and that this VAN release is effective in mitigating invading microbes in the wound site.
Collapse
Affiliation(s)
- Lauren J Delaney
- Department of Radiology, Thomas Jefferson University, 132 S. 10(th) Street, Main 10(th) Floor, Philadelphia, PA 19107, USA.
| | - Priscilla Machado
- Department of Radiology, Thomas Jefferson University, 132 S. 10(th) Street, Main 10(th) Floor, Philadelphia, PA 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, 132 S. 10(th) Street, Main 10(th) Floor, Philadelphia, PA 19107, USA
| | - Rachel Evans
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Asia Winslow
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Neil Zhao
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA; Rothman Institute, 925 Chestnut Street, Philadelphia, PA 19107, USA
| | - Rajkishen Narayanan
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA; Rothman Institute, 925 Chestnut Street, Philadelphia, PA 19107, USA
| | - Teeto Ezeonu
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA; Rothman Institute, 925 Chestnut Street, Philadelphia, PA 19107, USA
| | - Viren Soni
- College of Pharmacy, Thomas Jefferson University, 1025 Walnut Street, Suite 301, Philadelphia, PA 19107, USA
| | - Gagan Kaushal
- College of Pharmacy, Thomas Jefferson University, 1025 Walnut Street, Suite 301, Philadelphia, PA 19107, USA
| | - Rachel Hilliard
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 W Street Road, Kennett Square, PA 19348, USA
| | - Thomas P Schaer
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 W Street Road, Kennett Square, PA 19348, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, 132 S. 10(th) Street, Main 10(th) Floor, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Issa SF, Issa MS, Nauman E, Wassgren C, Schwab C, Ahsan ZS, Nour M, Field W. Tensile Force Limits of the Sheep Spine: Comparison to Forces Required to Extricate Grain Entrapped Victims. J Agromedicine 2025; 30:49-56. [PMID: 39530538 DOI: 10.1080/1059924x.2024.2426491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Grain storage facility entrapments continue to be of concern in the agricultural industry, with nearly 1,500 documented incidents recorded over the last 45 years. Previous research studies have shown that attempting to extricate a full-size pulling test dummy from a grain mass requires a substantial amount of tensile or pull force - e.g. up to 1.32 kN if "buried" at waist depth, 2.77 kN at chest depth, and 4.01 kN at head depth. There is, however, a paucity of studies on the amount of distraction the human lumbar spine region can endure. The objective of this research study was to test the maximum tensile force that could be exerted on a sheep's spine (comparable to the human spine) before the intervertebral discs and surrounding ligament would show signs of failure. METHODS Eight lumbar-region sheep spine segments were axially distracted using an MTS Criterion tensile testing machine, and the maximum forces were recorded. RESULTS The average maximum force that the spinal discs and ligament withstood before showing signs of failure was 2.14 kN (standard deviation of 0.31 kN). This is comparable to the force required to extricate an individual entrapped in a grain mass at chest depth. CONCLUSION The authors recommend that grain entrapment victims should not be forcefully pulled out if buried to waist level or above due to two primary reasons: (1) the large variation in failure load observed in our experiment with sheep spines and (2) the lack of knowledge regarding the victim's pre-existing medical condition. The extractive forces required to remove a victim of entrapment in grain overlaps with the force needed to cause potential damage to the sheep spine, as the 1.7-3.0 kN range is comparable to the 1.65-2.48 kN force range that causes axial failure in the spine.
Collapse
Affiliation(s)
- Salah F Issa
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mahmoud S Issa
- Department of Family Medicine, Lakeside Medical Center, Belle Glade, Florida, USA
| | - Eric Nauman
- Department of Biomedical Engineering and Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carl Wassgren
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Charles Schwab
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Zahab S Ahsan
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Mahmoud Nour
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - William Field
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Hong JY, Kim H, Jeon WJ, Yeo C, Kim H, Lee J, Lee YJ, Ha IH. Animal Models of Intervertebral Disc Diseases: Advantages, Limitations, and Future Directions. Neurol Int 2024; 16:1788-1818. [PMID: 39728755 DOI: 10.3390/neurolint16060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Animal models are valuable tools for studying the underlying mechanisms of and potential treatments for intervertebral disc diseases. In this review, we discuss the advantages and limitations of animal models of disc diseases, focusing on lumbar spinal stenosis, disc herniation, and degeneration, as well as future research directions. The advantages of animal models are that they enable controlled experiments, long-term monitoring to study the natural history of the disease, and the testing of potential treatments. However, they also have limitations, including species differences, ethical concerns, a lack of standardized protocols, and short lifespans. Therefore, ongoing research focuses on improving animal model standardization and incorporating advanced imaging and noninvasive techniques, genetic models, and biomechanical analyses to overcome these limitations. These future directions hold potential for improving our understanding of the underlying mechanisms of disc diseases and for developing new treatments. Overall, although animal models can provide valuable insights into pathophysiology and potential treatments for disc diseases, their limitations should be carefully considered when interpreting findings from animal studies.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea
| |
Collapse
|
4
|
Hagger G, Guest S, Birchall S, Bradley A, Brindley C, Corbett D, Cummings PJ, Freire C, Harris J, Wise A, Wood M, Czaplewski LG. Preclinical development and characterisation of PP353, a formulation of linezolid for intradiscal administration. JOR Spine 2024; 7:e70010. [PMID: 39544355 PMCID: PMC11561648 DOI: 10.1002/jsp2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Bacterial infection of the intervertebral disc can lead to vertebral endplate edema known as Modic changes, with associated chronic low back pain. Oral antimicrobial therapy has shown efficacy but relies on prolonged dosing and may not be optimal in terms of patient outcome, side effects, or antibiotic stewardship. There is no antibiotic formulation approved for intradiscal administration. Here, we describe the development and preclinical characterization of a formulation of linezolid, a suspension of 50 mg/mL micronized powder, for intradiscal administration. Methods Micronization, particle size analysis, Franz cell diffusion assays, ex vivo bioassay, and estimates of gelling temperature were used to optimize the composition and properties of the formulation. Performance of the formulation was assessed using sheep to characterize the pharmacokinetics and a model of intradiscal infection was developed to demonstrate efficacy. Suitability for human administration was demonstrated in a Good Laboratory Practice (GLP) local tolerance study. Results Micronized linezolid, formulated as a powder suspension using a vehicle containing poloxamer 407 and iohexol, provided a temperature-dependent radio-opaque gel that was suitable for image-guided percutaneous intradiscal administration. Efficacy in a sheep model of intradiscal Staphylococcus aureus infection was demonstrated. The formulation provides a high level of sheep disc tissue exposure, with Cmax of 6500 μg/g and limited systemic exposure, with a plasma Cmax of 0.04 μg/mL per 0.1 mL dose (5 mg of linezolid). Deconvolution of plasma linezolid pharmacokinetics correlated with linezolid remaining in the disc over time. Observations from a GLP local tolerance study with the linezolid formulation were of a minor nature and related to the intradiscal administration procedure. Conclusions Linezolid can be formulated for image-guided percutaneous intradiscal administration. The formulation is now in a Phase 1b clinical trial to evaluate safety, pharmacokinetics, and efficacy in patients with CLBP and suspected bacterial infection.
Collapse
|
5
|
Mattaliano G, Verdier N, Klonner ME, Kyllar M, Kau-Strebinger S, Otero PE. Ultrasound-guided quadratus lumborum block in sheep: A cadaveric study. Lab Anim 2024:236772241246021. [PMID: 39075854 DOI: 10.1177/00236772241246021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
This prospective anatomical study aimed to establish an ultrasound-guided technique to the quadratus lumborum (QL) plane in sheep cadavers. Thirteen cadavers, weighing less than 117 kg, were included. In phase 1, one cadaver underwent dissection and two cadavers underwent 3D computed tomographic reconstruction for anatomical evaluation of the thoracolumbar region. In phase 2, two cadavers were used to compare two ultrasound techniques to the QL plane: lateral to the QL muscle with a transversal approach (LQL) and transmuscular between QL and psoas muscles with a longitudinal approach (TQL). For LQL, the reference was the first lumbar transverse process, whereas for TQL, it was the intertransverse region between the first and second lumbar vertebrae. The needle was advanced in-plane towards the specific target for each technique and a total of four injections were performed using 0.4 ml kg-1 of a dye-lidocaine solution. In phase 3, 10 cadavers received bilateral LQL injections (n = 20). All cadavers were then dissected to evaluate spread of dye. In phase 2, following LQL injections, no dye was observed in undesired locations; however, the dye was noted in the retroperitoneal space (1/2) after TQL injections. In phase 3, the 13th thoracic, first, second, third lumbar nerves, and sympathetic trunk segments were stained in 80%, 95%, 100%, 45% and 35% of the injections, respectively. In conclusion, the LQL technique was feasible, allowing staining of the spinal nerves innervating the cranial abdomen in sheep cadavers. Further studies in live animals are warranted.
Collapse
Affiliation(s)
- Giorgio Mattaliano
- Clinical Unit of Anaesthesiology and Perioperative Intensive-Care Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Austria
| | - Natali Verdier
- Clinical Unit of Anaesthesiology and Perioperative Intensive-Care Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Austria
| | | | - Michal Kyllar
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Silvio Kau-Strebinger
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Pablo E Otero
- Department of Anaesthesiology and Pain Management, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Yoshizato H, Morimoto T, Nonaka T, Otani K, Kobayashi T, Nakashima T, Hirata H, Tsukamoto M, Mawatari M. Animal Model for Anterior Lumbar Interbody Fusion: A Literature Review. Spine Surg Relat Res 2024; 8:373-382. [PMID: 39131411 PMCID: PMC11310536 DOI: 10.22603/ssrr.2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 08/13/2024] Open
Abstract
Lumbar interbody fusion (LIF) is a surgical procedure for treating lumbar spinal stenosis and deformities. It removes a spinal disc and insert a cage or bone graft to promote solid fusion. Extensive research on LIF has been supported by numerous animal studies, which are being developed to enhance fusion rates and reduce the complications associated with the procedure. In particular, the anterior approach is significant in LIF research and regenerative medicine studies concerning intervertebral discs, as it utilizes the disc and the entire vertebral body. Several animal models have been used for anterior LIF (ALIF), each with distinct characteristics. However, a comprehensive review of ALIF models in different animals is currently lacking. Medium-sized and large animals, such as dogs and sheep, have been employed as ALIF models because of their suitable spine size for surgery. Conversely, small animals, such as rats, are rarely employed as ALIF models because of anatomical challenges. However, recent advancements in surgical implants and techniques have gradually allowed rats in ALIF models. Ambitious studies utilizing small animal ALIF models will soon be conducted. This review aims to review the advantages and disadvantages of various animal models, commonly used approaches, and bone fusion rate, to provide valuable insights to researchers studying the spine.
Collapse
Affiliation(s)
- Hiromu Yoshizato
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Otani
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Takema Nakashima
- Department of Orthopaedic Surgery, JCHO Saga Central Hospital, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Radiological Investigation of Guinea Pig ( Cavia porcellus) Lumbar Vertebral Morphology ‒ A Biomechanical Aspect. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Numerous studies are based on the use of animal models; however, in bipedal and tetrapedal organisms there are significant differences in the biomechanics of the spinal column, which can significantly impair the quality and applicability of the results obtained. The aim of this study is to obtain basic data on the morphometric parameters of guinea pig lumbar vertebrae, the analysis of which will indicate the location of the biggest mechanical load. The lumbar vertebra morphometry test was performed by means of X-ray imageing obtained from 12 guinea pigs, with equal numbers of males and females. The results of investigations show that guinea pig lumbar vertebrae have an irregular trapezoid geometry and that the measured body lengths of L4 and L5 are the largest. The height parameters determined in the medial level showed that L4 had the most concave body. Moreover, L4 had the greatest depth of the spinal canal at the same measurement level. Consequently, in guinea pigs, the greatest load is in the L4 region, unlike in humans, where, due to the axial load of the spinal column, the highest pressure is exerted on the last lumbar vertebrae.
Collapse
|
8
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
9
|
Constant C, Hom WW, Nehrbass D, Carmel E, Albers CE, Deml MC, Gehweiler D, Lee Y, Hecht A, Grad S, Iatridis JC, Zeiter S. Comparison and optimization of sheep in vivo intervertebral disc injury model. JOR Spine 2022; 5:e1198. [PMID: 35783908 PMCID: PMC9238284 DOI: 10.1002/jsp2.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding.
Collapse
Affiliation(s)
| | - Warren W. Hom
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - Eric‐Norman Carmel
- Département de sciences cliniques, Faculté de médecine vétérinaireUniversité de MontréalSaint‐HyacintheCanada
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | - Moritz C. Deml
- Department of Orthopaedic Surgery & TraumatologyInselspital, University Hospital BernBernSwitzerland
| | | | - Yunsoo Lee
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | - Andrew Hecht
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | | - James C. Iatridis
- Department of OrthopaedicsIcahn School of Medicine, Mount Sinai Health SystemNew YorkNew YorkUSA
| | | |
Collapse
|
10
|
Säteri T, Nurro J, Hätinen OP, Hakulinen M, Leinonen V, Elomaa AP. 'Ex Vivo Porcine Models Are Valid for Testing and Training Microsurgical Lumbar Decompression Techniques'. World Neurosurg 2021; 155:e64-e74. [PMID: 34380085 DOI: 10.1016/j.wneu.2021.07.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Spinal surgeries are the leading causes for patient settlement issues. Recent European Medical Device Regulations aims to reduce complications by enforcing that surgical tools are validated before clinical use. Human cadavers are favored in preclinical use, but due to anatomical variance, decay and scarce supply, alternative synthetic and animal models are used. This study evaluates the fidelity and validity of porcine models in training and assessment of microsurgical decompressive techniques in lumbar spine. METHODS Anatomical dimensions of ten human and five young pig spines were assessed from CT images. Novel 'en bloc' fresh-frozen ex vivo porcine model tissues' fidelity and validity for decompressive surgery was evaluated by three expert neurosurgeons, in comparison to other models. RESULTS The pig's anatomical dimensions were on average 11% smaller than in humans. The pig's L4-L5 was most alike humans and highest similarity was in lamina and spinous process widths, and skin to posterior longitudinal ligament distance. Dimensional variability was higher in humans (F = 19.06-0.56, p<0.05). The pig's tissues were felt as good as living patients and better than cadavers for skin, fascia, bone, facets, ligamentum flavum and dura, but poor for vessels (experts ICC=0.696-0.903). The pig models validity for assessing drills adverse features (friction, jitter, heating, and soft tissue trauma) were reported unanimously excellent. CONCLUSION Pigs are representative for assessing microsurgical decompression techniques in the lower lumbar spine. The novel 'en bloc' pig model can be an asset for industries and clinicians during assessment and training of new spinal techniques.
Collapse
Affiliation(s)
- Tuomas Säteri
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland.
| | - Jussi Nurro
- University of Eastern Finland, AIV Institute, Kuopio, Finland; Saparo Translational Research Oy, Kuopio, Finland
| | | | | | - Ville Leinonen
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland
| | - Antti-Pekka Elomaa
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurosurgery, Kuopio, Finland; Kuopio University Hospital, Microsurgery Center www.microsurgerycenter.com, Kuopio, Finland
| |
Collapse
|
11
|
Injection of Calcium Phosphate Apatitic Cement/Blood Composites in Intervertebral Fusion Cages: A Simple and Efficient Alternative to Autograft Leading to Enhanced Spine Fusion. Spine (Phila Pa 1976) 2020; 45:E1288-E1295. [PMID: 32694485 DOI: 10.1097/brs.0000000000003598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Collateral effects of targeting the nucleus pulposus via a transpedicular or transannular surgical route: a combined X-ray, MRI, and histological long-term descriptive study in sheep. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 30:585-595. [PMID: 32945962 DOI: 10.1007/s00586-020-06602-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE In the context of regenerative medicine strategies, based in particular on the injection of regenerative cells, biological factors, or biomaterials into the nucleus pulposus (NP), two main routes are used: the transpedicular approach (TPA) and the transannular approach (TAA). The purpose of our study was to compare the long-term consequences of the TPA and the TAA on intervertebral disc (IVD) health through a longitudinal follow-up in an ovine model. METHODS The TPA and the TAA were performed on 12 IVDs from 3 sheep. Six discs were left untreated and used as controls. The route and injection feasibility, as well as the IVD environment integrity, were assessed by MRI (T2-weighted signal intensity), micro-CT scan, and histological analyses (Boos' scoring). The sheep were assessed at 1, 3, and 7 months. RESULTS Both the TPA and the TAA allowed access to the NP. They both induced NP degeneration, as evidenced by a decrease in the T2wsi and an increase in the Boos' scores. The TPA led to persistent end-plate defects and herniation of NP tissue (Schmorl's node-like) after 7 months as well as the presence of osseous fragments in the NP. CONCLUSIONS The TPA induced more severe lesions in IVDs and vertebrae compared to the TAA. The lesions induced by the TPA are reason to consider whether or not this route is optimal for studying IVD regenerative medicine approaches.
Collapse
|
13
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
14
|
Bashkuev M, Reitmaier S, Schmidt H. Is the sheep a suitable model to study the mechanical alterations of disc degeneration in humans? A probabilistic finite element model study. J Biomech 2019; 84:172-182. [PMID: 30660378 DOI: 10.1016/j.jbiomech.2018.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 01/08/2023]
Abstract
Intervertebral disc degeneration is one major source of low back pain, which because of its complex multifactorial nature renders the treatment challenging and thus necessitates extensive research. Experimental animal models have proven valuable in improving our understanding of degenerative processes and potentially promising therapies. Currently, the sheep is the most frequently used large animal in vivo model in intervertebral disc research. However, despite its undoubted value for investigations of the complex biological and cellular aspects, to date, it is unclear whether the sheep is also suited to study the mechanical aspects of disc degeneration in humans. A parametric finite element (FE) model of the L4-5 spinal motion segment was developed. Using this model, the geometry and the material properties of both the human and the ovine spinal segment as well as different appearances of disc degeneration can be depicted. Under pure and combined loads, it was investigated whether degenerative changes to both the human and the ovine model equivalent caused the same mechanical response. Different patterns of degeneration resulted in large variations in the ranges of motion, intradiscal pressure, ligament and facet loads. In the human, but not in the ovine model, all these results differed significantly between different degrees of degeneration. This FE model study highlighted possible differences in the mechanical response to disc degeneration between human and ovine intervertebral discs and indicates the necessity of further, more detailed, investigations.
Collapse
Affiliation(s)
- Maxim Bashkuev
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Germany
| | - Sandra Reitmaier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Germany
| | - Hendrik Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Germany.
| |
Collapse
|
15
|
Morphometric Analysis of the Lumbar Vertebrae Concerning the Optimal Screw Selection for Transpedicular Stabilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1133:83-96. [PMID: 30680647 DOI: 10.1007/5584_2018_324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transpedicular stabilization is a frequently used spinal surgery for fractures, degenerative changes, or neoplastic processes. Improper screw fixation may cause substantial vascular or neurological complications. This study seeks to define detailed morphometric measurements of the pedicle (height, width, and surface area) in the aspects of screw length and girth selection and the trajectory of its implantation, i.e., sagittal and transverse angle of placement. The study was based on CT examinations of 100 Caucasian patients (51 women and 49 men) aged 27-75 with no anatomical, degenerative, or post-traumatic spine changes. The results were stratified by gender and body side, and they were counter compared with the available literature database. Pedicle height decreased from L1 to L4, ranging from 15.9 to 13.3 mm. Pedicle width increased from L1 to L5, extending from 6.1 to 13.2 mm. Pedicle surface area increased from L1 to L5, ranging from 63 to 140 mm2. Distance from the point of entry into the pedicle to the anterior surface of the vertebral body, defining the maximum length of a transpedicular screw, varied from 54.0 to 50.2 mm. Variations concerning body sides were inappreciable. A transverse angle of screw trajectory extended from 20° to 32°, shifting caudally from L1 to L5, with statistical differences in the L3-L5 segments. A sagittal angle varied from 10° to 12°, without such definite relations. We conclude that the L1 and L2 segments display the most distinct morphometric similarities, while the greatest differences, in both genders, are noted for L3, L4, and L5. The findings enable the recommendation of the following screw diameters: 4 mm for L1-L2, 5 mm for L3, 6 mm for L4-L5, and the length of 50 mm. We believe the study has extended clinical knowledge on lumbar spine morphometry, essential in the training physicians engaged in transpedicular stabilization.
Collapse
|
16
|
Easley J, Puttlitz CM, Seim H, Ramo N, Abjornson C, Cammisa FP, McGilvray KC. Biomechanical and histologic assessment of a novel screw retention technology in an ovine lumbar fusion model. Spine J 2018; 18:2302-2315. [PMID: 30075298 DOI: 10.1016/j.spinee.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Screw loosening is a prevalent failure mode in orthopedic hardware, particularly in osteoporotic bone or revision procedures where the screw-bone engagement is limited. PURPOSE The objective of this study was to evaluate the efficacy of a novel screw retention technology (SRT) in an ovine lumbar fusion model. STUDY DESIGN/SETTING This was a biomechanical, radiographic, and histologic study utilizing an ovine lumbar spine model. METHODS In total, 54 (n=54) sheep lumbar spines (L2-L3) underwent posterior lumbar fusion (PLF) via pedicle screw fixation, connecting rod, and bone graft. Following three experimental variants were investigated: positive control (ideal clinical scenario), negative control (simulation of compromised screw holes), and SRT treatments. Biomechanical and histologic analyses of the functional spinal unit (FSU) were determined as a function of healing time (0, 3, and 12 months postoperative). RESULTS Screw pull-out, screw break-out, and FSU stability of the SRT treatments were generally equivalent to the positive control group and considerably better than the negative control group. Histomorphology of the SRT treatment screw region of interest (ROI) observed an increase in bone percentage and decrease in void space during healing, consistent with ingrowth at the implant interface. The PLF ROI observed similar bone percentage throughout healing between the SRT treatment and positive control. Less bone formation was observed for the negative control. CONCLUSIONS The results of this study demonstrate that the SRT improved screw retention and afforded effective FSU stabilization to achieve solid fusion in an otherwise compromised fixation scenario in a large animal model.
Collapse
Affiliation(s)
- Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374, USA
| | - Howard Seim
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Nicole Ramo
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374, USA
| | - Celeste Abjornson
- Integrated Spine Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Frank P Cammisa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Kirk C McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374, USA.
| |
Collapse
|
17
|
van Dijk LA, Duan R, Luo X, Barbieri D, Pelletier M, Christou C, Rosenberg AJWP, Yuan H, Barrèrre‐de Groot F, Walsh WR, de Bruijn JD. Biphasic calcium phosphate with submicron surface topography in an Ovine model of instrumented posterolateral spinal fusion. JOR Spine 2018; 1:e1039. [PMID: 31463454 PMCID: PMC6686792 DOI: 10.1002/jsp2.1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
As spinal fusions require large volumes of bone graft, different bone graft substitutes are being investigated as alternatives. A subclass of calcium phosphate materials with submicron surface topography has been shown to be a highly effective bone graft substitute. In this work, a commercially available biphasic calcium phosphate (BCP) with submicron surface topography (MagnetOs; Kuros Biosciences BV) was evaluated in an Ovine model of instrumented posterolateral fusion. The material was implanted stand-alone, either as granules (BCPgranules) or as granules embedded within a fast-resorbing polymeric carrier (BCPputty) and compared to autograft bone (AG). Twenty-five adult, female Merino sheep underwent posterolateral fusion at L2-3 and L4-5 levels with instrumentation. After 6, 12, and 26 weeks, outcomes were evaluated by manual palpation, range of motion (ROM) testing, micro-computed tomography, histology and histomorphometry. Fusion assessment by manual palpation 12 weeks after implantation revealed 100% fusion rates in all treatment groups. The three treatment groups showed a significant decrease in lateral bending at the fusion levels at 12 weeks (P < 0.05) and 26 weeks (P < 0.001) compared to the 6 week time-point. Flexion-extension and axial rotation were also reduced over time, but statistical significance was only reached in flexion-extension for AG and BCPputty between the 6 and 26 week time-points (P < 0.05). No significant differences in ROM were observed between the treatment groups at any of the time-points investigated. Histological assessment at 12 weeks showed fusion rates of 75%, 92%, and 83% for AG, BCPgranules and BCPputty, respectively. The fusion rates were further increased 26 weeks postimplantation. Similar trends of bone growth were observed by histomorphometry. The fusion mass consisted of at least 55% bone for all treatment groups 26 weeks after implantation. These results suggest that this BCP with submicron surface topography, in granules or putty form, is a promising alternative to autograft for spinal fusion.
Collapse
Affiliation(s)
- Lukas A. van Dijk
- Kuros Biosciences BVBilthovenThe Netherlands
- Department of Oral and Maxillofacial SurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rongquan Duan
- Kuros Biosciences BVBilthovenThe Netherlands
- Biomaterial Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Xiaoman Luo
- Kuros Biosciences BVBilthovenThe Netherlands
| | | | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Chris Christou
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Huipin Yuan
- Kuros Biosciences BVBilthovenThe Netherlands
- MERLN Institute for Technology‐inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | | | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Joost D. de Bruijn
- Kuros Biosciences BVBilthovenThe Netherlands
- School of Materials Science and EngineeringQueen Mary University of LondonLondonUK
| |
Collapse
|
18
|
Musk GC, McDonnell NJ, Newman M, Kemp MW. Neurologic Complications Associated with Transdermal Placement of Intrathecal Catheters in Sheep. Comp Med 2018; 68:221-226. [PMID: 29673420 DOI: 10.30802/aalas-cm-17-000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A study using an ovine model of transdermal intrathecal catheterization was planned to investigate the neurotoxicity of magnesium sulfate. Nonpregnant Merino cross ewes (n = 8; age, 5 y; weight, 55.0 ± 6.5 kg) were anesthetized for placement of a lumbar intrathecal catheter. The study protocol defined a 5-d recovery period after introduction of the catheter before the administration of test substances (2 mL of 0.9% saline or 50 or 150 mg MgSO4) followed by euthanasia 1 wk later. Although 3 sheep successfully completed the study as planned, one of the remaining 5 sheep was withdrawn when the catheter was accidentally dislodged 2 d after anesthesia; another was withdrawn because of persistent neurologic deficits of the left hindlimb and intense pruritus during the first 24 h after placement of the catheter; and the remaining 3 animals experienced unacceptable complications within the first 4 h of administration of the test substance. These complications included hindlimb weakness, intense irritation or pruritus of the hindlimbs, recumbency, inability to stand, spasm of the hindlimb, and arching of the back. Postmortem examination of 4 sheep with clinical signs revealed similar gross findings: acute, segmental myelomalacia and hemorrhage within the spinal cord parenchyma in the region of the catheter. Histologic changes included segmental areas of acute myelomalacia, consistent with the intraparenchymal placement of the catheter. Postmortem CT imaging of 3 sheep confirmed the location of the catheter within the spinal cord. Procedural refinement for the placement of intrathecal catheters in sheep by avoiding an invasive surgical procedure was unsuccessful. We therefore recommend a complete or partial surgical approach for the insertion of an intrathecal catheter in sheep or fluoroscopy or ultrasonography intraoperatively to confirm correct placement of the catheter.
Collapse
Affiliation(s)
- Gabrielle C Musk
- Animal Care Services, King Edward Memorial Hospital, Subiaco, Western Australia, Australia.
| | - Nolan J McDonnell
- School of Medicine and Pharmacology, King Edward Memorial Hospital, Department of Anaesthesia and Pain Medicine, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Mark Newman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J 2018; 18:357-369. [PMID: 29031993 DOI: 10.1016/j.spinee.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Targeted delivery of osteoinductive bone morphogenetic proteins (eg, GDF5) in bioresorbable calcium phosphate cement (CPC), potentially suitable for vertebroplasty and kyphoplasty of osteoporotic vertebral fractures, may be required to counteract augmented local bone catabolism and to support complete bone regeneration. The biologically optimized GDF5 mutant BB-1 may represent an attractive drug candidate for this purpose. PURPOSE The aim of the current study was to test an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming CPC containing low-dose BB-1 in a sheep lumbar osteopenia model. STUDY DESIGN/ SETTING This is a prospective experimental animal study. METHODS Bone defects (diameter 5 mm) were generated in aged, osteopenic female sheep and were filled with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of BB-1 (L5; CPC+fibers+BB-1; 5, 100, and 500 µg BB-1; n=6 each). The results were compared with those of untouched controls (L1). Three and 9 months after the operation, structural and functional effects of the CPC (±BB-1) were analyzed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (BV/TV) (assessed by micro-CT and histomorphometry), trabecular thickness (Tb.Th), and trabecular number (Tb.N); (3) bone formation, that is, osteoid volume/bone volume (OV/BV), osteoid surface/bone surface (OS/BS), osteoid thickness, mineralizing surface/bone surface (MS/BS), mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS Compared with untouched controls (L1), CPC+fibers (L4) and/or CPC+fibers+BB-1 (L5) significantly improved all parameters of bone formation, bone resorption, and bone structure. These effects were observed at 3 and 9 months, but were less pronounced for some parameters at 9 months. Compared with CPC without BB-1, additional significant effects of BB-1 were demonstrated for BMD, bone structure (BV/TV, Tb.Th, and Tb.N), and bone formation (OS/BS and MS/BS). The BB-1 effects on bone formation at 3 and 9 months were dose dependent, with 100 µg as the potentially optimal dosage. CONCLUSIONS BB-1 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. A single local dose as low as 100 µg BB-1 was sufficient to augment middle- to long-term bone formation. A CPC containing the novel GDF5 mutant BB-1 may thus represent an alternative to the bioinert, supraphysiologically stiff polymethylmethacrylate cement presently used to treat osteoporotic vertebral fractures by vertebroplasty and kyphoplasty.
Collapse
|
20
|
Reitmaier S, Graichen F, Shirazi-Adl A, Schmidt H. Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research. J Bone Joint Surg Am 2017; 99:e102. [PMID: 28976436 DOI: 10.2106/jbjs.17.00172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.
Collapse
Affiliation(s)
- Sandra Reitmaier
- 1Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany 2École Polytechnique, Montréal, Canada
| | | | | | | |
Collapse
|
21
|
Standardisation of sheep model for endodontic regeneration/revitalisation research. Arch Oral Biol 2016; 65:87-94. [DOI: 10.1016/j.archoralbio.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/17/2015] [Accepted: 01/16/2016] [Indexed: 11/20/2022]
|
22
|
Fu LJ, Chen CS, Xie YZ, Yang JW, Sun XJ, Zhang P. Effect of a New Annular Incision on Biomechanical Properties of the Intervertebral Disc. Orthop Surg 2016; 8:68-74. [PMID: 27028383 DOI: 10.1111/os.12226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/15/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To compare the biomechanical properties of a novel annular incision technique, an oblique incision made approximately 60° to the spinal column, with the traditional transverse and longitudinal annular slit incision in an ex vivo sheep lumbar spine model. METHODS Sixteen sheep lumbar spines were used for the current ex vivo biomechanical comparative study. Functional spine unit (FSU) specimens composed of two vertebrae and one disc in the middle was cut from the whole lumbar spine. Annular slit incisions of 5 mm were made in different directions with a 15-blade knife at the intervertebral disc, following which partial discectomy was performed to produce the following groups: control with no incision, transverse slit, longitudinal slit and oblique slit groups. The specimens were then subjected to flexion-extension, lateral bending, axial rotation and compression tests. RESULTS As expected, the control group showed the least range of motion (ROM) in the flexion-extension test. The oblique slit group showed a trend toward a smaller ROM than the transverse and longitudinal groups in 1, 2, 3 and 5 Nm flexion-extension tests; these differences were not statistically significant (P > 0.05). In addition, the transverse (5.80° ± 0.20°), longitudinal (5.77° ± 0.67°) and oblique (5.47° ± 0.43°) slit groups showed a significantly larger ROM than the control group (3.22° ± 0.28°) in 2 Nm lateral bending tests (P < 0.05). Compared with the transverse and longitudinal groups, the oblique group also showed a trend toward a smaller ROM in lateral bending tests (P > 0.05). Following increments in the axial torsion force, the ROM was greater in all four experimental groups than the ROM with 1 Nm axial torsion. Furthermore, a significantly smaller axial rotational ROM was found in the oblique than the transverse group for 1 and 5 Nm force (P < 0.05). With increase in the axial force to 5 Nm, the ROM in the oblique slit group (4.71° ± 0.52°) was significantly smaller than that in the transverse group (7.25° ± 0.46°, P < 0.05), but not significantly different from that of the longitudinal slit group (5.84° ± 0.23°, P > 0.05). Comparable ultimate loads to failure were found in the oblique, transverse and longitudinal groups; the highest ultimate load to failure being in the control group (P > 0.05). CONCLUSION The novel oblique slit annular incision to the intervertebral disc showed a trend toward better biomechanical properties than the traditional transverse and longitudinal slit incisions.
Collapse
Affiliation(s)
- Ling-jie Fu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang-sheng Chen
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
| | - You-zhuan Xie
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-wei Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-jiang Sun
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
24
|
Point of view. Spine (Phila Pa 1976) 2014; 39:1029. [PMID: 24583743 DOI: 10.1097/brs.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Response to point of view. Spine (Phila Pa 1976) 2014; 39:1030-1. [PMID: 24718078 DOI: 10.1097/brs.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|