1
|
Takase K, Yokota H, Ohno A, Watanabe M, Kushiyama A, Kushiyama S, Yamagami S, Nagaoka T. A pilot study of diabetic retinopathy in a porcine model of maturity onset diabetes of the young type 3 (MODY3). Exp Eye Res 2023; 227:109379. [PMID: 36608813 DOI: 10.1016/j.exer.2022.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in the working population. Because novel therapeutic intervention require testing, there is an urgent need for reliable animal models that faithfully replicate DR. Pig eyes have many similarities to human eyes anatomically and physiologically. Thus, attempts have been made to establish porcine models of DR by surgical, pharmaceutical or genetical induction of insulin deficiency, and dietary intervention. A previous study reported a transgenic pig model of maturity onset diabetes of the young type 3 (MODY3) developed signs of severe DR such as hemorrhage and proliferative tissue at the surface of the retina. However, the course of development of DR has not been studied in detail in this model. The purpose of this study was to investigate the early phase of DR in a MODY3. MODY3 and wild-type (WT) pigs underwent fundus photography and fluorescein angiogram (FA) before they developed cataracts. Animals were euthanized at age 1, 4, 7, and 10 months. Whole-mount retina and 10-μm thick paraffinized sections were stained with isolectin B4, and vessel density was determined by MATLAB software. At 4 and 7 months, retinal arterioles were immediately cannulated, and vasomotor action was measured by incubation with bradykinin and sodium nitroprusside. In the MODY3 pigs, fasting blood sugar levels gradually increased up to 500 mg/dL. Vascular tortuosity and yellowish spindle-shaped lesions were confirmed in MODY3 pigs at the age of 7 months; however, no microaneurysms were detected on FA. Compared with age-matched WT pigs, MODY3 pigs showed a significant decrease in blood vessel density in the intermediate and deep vascular plexus at 4 and 7 months of age and a slight decrease in capillary density in the superficial vascular plexus at 7 months of age. In MODY3 pigs, electron microscopy revealed thickening of the capillary basement membrane and leukostasis in the major blood vessels at 10 months of age. Bradykinin-induced dilation of retinal arterioles was diminished in MODY3 pigs as early as 7 months of age. Within 1 year after birth, MODY3 pigs show all typical early vascular lesions of diabetes except for microaneurysm formation. This pilot study suggests that the MODY3 pigs may serve as a suitable DR model to test effects of newly developed compounds on DR.
Collapse
Affiliation(s)
- Koyo Takase
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan.
| | - Akira Ohno
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Sakura Kushiyama
- Division of Life Science, Department of Nursing, National College of Nursing, Kiyose, Tokyo, 204-8575, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| |
Collapse
|
2
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|