1
|
Wang Y, Fang J, Lü F, Zhang H, He P. Food waste anaerobic digestion plants: Underestimated air pollutants and control strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166143. [PMID: 37572914 DOI: 10.1016/j.scitotenv.2023.166143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Food waste management is an important global issue, and anaerobic digestion (AD) is a sustainable technology for treating food waste and developing a circular economy. Odor and health problems in AD plants have drawn increasing public attention. Therefore, this study investigated the odor characteristics and health risks in different workshops of food waste AD plants. At each site, the treatment capacities for kitchen and restaurant waste were 200 and 200-250 tons per day, respectively. Among the detected odorants, ethanol was the dominant component in terms of concentrations, while methanethiol, propanethiol, H2S, and acetaldehyde were the major odor contributors in different workshops. The odor contribution of propanethiol had been previously overlooked in several workshops. The unloading, pretreatment, and bio-hydrolysis workshops were identified as major areas requiring odor control. Besides odor, carcinogenic and non-carcinogenic risks commonly existed in food waste AD plants. The carcinogenic risk of acetaldehyde had been underestimated previously, and it was identified as the dominant carcinogen. Furthermore, benzene was a potential carcinogen. Non-carcinogenic risks were mainly caused by acetaldehyde, H2S, and ethyl acetate. The health risks were not always consistent with odor nuisance. Based on the odor and health risk assessments, several air pollution control strategies for food waste AD plants were proposed, including food waste source control, in-situ pollution control, and ex-situ pollution control.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingjing Fang
- Naval Medical Centre, Naval Medical University, Shanghai 200433, China.
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
3
|
Deodorant Activity of Black Cumin Seed Essential Oil against Garlic Organosulfur Compound. Biomolecules 2021; 11:biom11121874. [PMID: 34944518 PMCID: PMC8699612 DOI: 10.3390/biom11121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The deodorant activity of black cumin (Nigella sativa L.) seed, a spice used to flavor curry and vegetable foods in Southwest Asia, against garlic (Allium sativum L.) organosulfur compounds related to human malodor was evaluated. Black cumin seed essential oil showed remarkable deodorant activity against garlic essential oil. The mode of action of this deodorant activity was presumed to be that black cumin seed essential oil covalently reacted with the organosulfur compounds in garlic. Therefore, thymoquinone, which is a major constituent in black cumin seed essential oil, and allyl mercaptan, which is one of the organosulfur compounds produced by cutting garlic, were reacted in vitro, and the products were purified and elucidated using spectroscopic data. As a result, these substances were identified as different allyl mercaptan adducts to dihydrothymoquinone. This chemical reaction was presumed to play a key role in the deodorant activity of black cumin seed essential oil.
Collapse
|
4
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Ishikawa M, Murata T, Okamoto M, Miyanohara M, Yamashita M, Hanada N, Senpuku H, Shibuya K. Inhibitory effect of black cumin (Nigella sativa) seed essential oil on Fusobacterium nucleatum L-methionine-γ-lyase (L-methioninase) activity. FEMS Microbiol Lett 2021; 368:6246423. [PMID: 33885765 DOI: 10.1093/femsle/fnab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
The enzyme L-methionine-γ-lyase is commonly found in a wide range of bacteria and catalyzes the α-elimination and γ-elimination of L-methionine to produce methyl mercaptan, α-ketobutyrate and ammonia. Black cumin seed essential oil (BC oil) reportedly exhibits deodorizing activity against methyl mercaptan. Therefore, we hypothesized that BC oil may also suppress methyl mercaptan production. In this study, we aimed to evaluate the inhibitory effect of BC oil on L-methionine-γ-lyase activity in Fusobacterium nucleatum. Recombinant L-methionine-γ-lyase was incubated under appropriate conditions with BC oil and its constituent thymoquinone. To analyze L-methionine-γ-lyase activity, α-ketobutyric acid and ammonia concentrations were determined. The concentrations of α-ketobutyric acid and ammonia were significantly decreased by 10 µg mL-1 of BC oil (P < 0.01) and 16.4 µg/mL of thymoquinone (P < 0.05). An enzyme kinetic assay showed a mixed inhibition pattern between L-methionine-γ-lyase and thymoquinone. In conclusion, BC oil not only had a deodorizing effect against methyl mercaptan but also an inhibitory effect on methyl mercaptan production through the suppression of L-methionine-γ-lyase activity. Thymoquinone may be mainly responsible for these effects of BC oil. Thus, application of natural BC oil may be adapted not only for medical use but also in other areas of life.
Collapse
Affiliation(s)
- Masao Ishikawa
- Laboratory for Oral Health Science, 370-7 Higashikoiso Oiso-Machi, Naka-Gun, Kanagawa 255-0004, Japan.,Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Takatoshi Murata
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Masaaki Okamoto
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Mayu Miyanohara
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Mamiko Yamashita
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Nobuhiro Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Hidenobu Senpuku
- National Institute of Infectious Diseases Department of Bacteriology I, 1-23-1 Toyama, Shinjuku-Ku, Tokyo 162-8640, Japan
| | - Koji Shibuya
- Laboratory for Oral Health Science, 370-7 Higashikoiso Oiso-Machi, Naka-Gun, Kanagawa 255-0004, Japan
| |
Collapse
|
6
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
7
|
Silva AFC, Haris PI, Serralheiro ML, Pacheco R. Mechanism of action and the biological activities of Nigella sativa oil components. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Comparison of Chemical Composition between Kuromoji ( Lindera umbellata) Essential Oil and Hydrosol and Determination of the Deodorizing Effect. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25184195. [PMID: 32933154 PMCID: PMC7570690 DOI: 10.3390/molecules25184195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 01/23/2023]
Abstract
Kuromoji (Lindera umbellata) is a tree that grows throughout Japan. The components of kuromoji essential oil have antitumor and aromatherapy effects. However, the composition of the hydrosol, obtained as a by-product of the essential oil process, is unknown. Furthermore, it is unknown whether kuromoji essential oil has a deodorizing effect. Therefore, the purpose of the current study was to compare the chemical composition of kuromoji essential oil and hydrosol, as well as evaluate the deodorizing effect of the former. The chemical composition of samples was evaluated using gas chromatography–mass spectrometry (GC-MS). Additionally, the deodorizing effect of Kuromoji essential oil was investigated with the detector tube method using ammonia, hydrogen sulfide, methyl mercaptan, and isovaleric acid. Linalool was the most abundant component in both the essential oil and hydrosol; however, its proportion was higher in the hydrosol (57.5%) than in the essential oil (42.8%). The hydrosol contained fewer chemical components, but higher proportions of trans-geraniol and ethanol. Moreover, the essential oil eliminated 50% of ammonia and 97.6% or more of isovaleric acid. Interestingly, linalool was soluble in the hydrosol and did not irritate the skin. This suggests that the hydrosol may be an effective foot care product.
Collapse
|
9
|
Akinwumi KA, Jubril AJ, Olaniyan OO, Umar YY. Ethanol extract of Nigella sativa has antioxidant and ameliorative effect against nickel chloride-induced hepato-renal injury in rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nickel exposure causes hepato-renal toxicity via oxidative stress. Medicinal plants with antioxidants properties are being explored as treatment options. In this study, the effect of ethanol extract of Nigella sativa (ENS) on nickel chloride (NiCl2)-induced hepato-renal damage was evaluated by monitoring biochemical and oxidative stress markers. Additionally, the antioxidant capacity and phytochemical constituents of ENS were quantified using HPLC and GC-MS.
Result
NiCl2 significantly increased (p < 0.05) aspartate aminotransferase, creatinine, sodium ion, chloride ion and malondialdehyde levels, while antioxidant enzymes were decreased in the organs except for kidney glutathione-S-transferase when compared to the control. However, ENS exerted inhibitory effect against NiCl2 toxicity in both organs by reversing the biomarkers towards control levels. ENS has a high antioxidant capacity and is rich in antioxidants including gallic acid, quercetin, eucalyptol and levomenthol that may have accounted for the improvement of hepato-renal health in co-exposed rats.
Conclusion
Our result suggests that amelioration of nickel chloride-induced hepato-renal pathology by ethanol extract of Nigella sativa was related to its antioxidant properties. Therefore, Nigella sativa could be valuable in the management of nickel-induced toxicity.
Collapse
|
10
|
Tada A, Nakayama-Imaohji H, Yamasaki H, Elahi M, Nagao T, Yagi H, Ishikawa M, Shibuya K, Kuwahara T. Effect of thymoquinone on Fusobacterium nucleatum‑associated biofilm and inflammation. Mol Med Rep 2020; 22:643-650. [PMID: 32626941 PMCID: PMC7339527 DOI: 10.3892/mmr.2020.11136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
Periodontitis affects oral tissues and induces systemic inflammation, which increases the risk of cardiovascular disease and metabolic syndrome. Subgingival plaque accumulation is a trigger of periodontitis. Fusobacterium nucleatum (FN) contributes to subgingival biofilm complexity by intercalating with early and late bacterial colonizers on tooth surfaces. In addition, inflammatory responses to FN are associated with the progression of periodontitis. Nigella sativa Lin. seed, which is known as black cumin (BC), has been used as a herbal medicine to treat ailments such as asthma and infectious diseases. The current study examined the inhibitory effect of BC oil and its active constituents, thymol (TM) and thymoquinone (TQ), on FN-associated biofilm and inflammation. FN-containing biofilms were prepared by co-cultivation with an early dental colonizer, Actinomyces naeslundii (AN). The stability and biomass of FN/AN dual species biofilms were significantly higher compared with FN alone. This effect was retained even with prefixed cells, indicating that FN/AN co-aggregation is mediated by physicochemical interactions with cell surface molecules. FN/AN biofilm formation was significantly inhibited by 0.1% TM or TQ. Confocal laser scanning microscopy indicated that treatment of preformed FN/AN biofilm with 0.01% of BC, TM or TQ significantly reduced biofilm thickness, and TQ demonstrated a cleansing effect equivalent to that of isopropyl methylphenol. TQ dose-dependently suppressed TNF-α production from a human monocytic cell line, THP-1 exposed to FN, yet showed no toxicity to THP-1 cells. These results indicated that oral hygiene care using TQ could reduce FN-associated biofilm and inflammation in gingival tissue.
Collapse
Affiliation(s)
- Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Tamiko Nagao
- Faculty of Nursing, Shikoku University, Ohjin, Tokushima 771‑1192, Japan
| | - Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Masao Ishikawa
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Koji Shibuya
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| |
Collapse
|
11
|
Henmi A, Shoji M, Nomura M, Inoue T. Fatty Acid Composition and Applications of Eriobotrya japonica Seed Oil. J Oleo Sci 2019; 68:599-606. [PMID: 31178459 DOI: 10.5650/jos.ess18178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The loquat (Eriobotrya japonica) is commonly found in Japan. Its fruits are consumed raw or used in processed foods, and its leaves are used as a traditional medicine and in the manufacturing of cosmetics. Additionally, its seeds have several industrial applications. Therefore, this study aimed to estimate the fatty acid composition of loquat seed oil, and to evaluate its potential application as a deodorant. Palmitic acid, linoleic acid, behenic acid, and lignoceric acid were found to be the primary fatty acids present in the seeds, among which linoleic acid was involved in the deodorization of allyl methyl sulfide. Based on these results, loquat seed oil has potential for use in deodorant production.
Collapse
Affiliation(s)
| | - Minori Shoji
- Major in System Engineering, Graduate School of Systems Engineering, Graduate, Kindai University
| | - Masato Nomura
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University
| | - Toshio Inoue
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University
| |
Collapse
|