1
|
Duan H, Wang W, Li Y, Jilany Khan G, Chen Y, Shen T, Bao N, Hua J, Xue Z, Zhai K, Wei Z. Identification of phytochemicals and antioxidant activity of Premna microphylla Turcz. stem through UPLC-LTQ-Orbitrap-MS. Food Chem 2021; 373:131482. [PMID: 34731817 DOI: 10.1016/j.foodchem.2021.131482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022]
Abstract
Premna microphylla Turcz. is a commonly used traditional Chinese medicine totreatdysentery and appendicitis. Present study is focused to explore antioxidants and other compounds in the Premna microphylla Turcz. stem. Assessment of chemical composition was done with high sensitivity UPLC-LTQ-Orbitrap-MS and for Separation Thermo Hypersil Gold (100 mm × 2.1 mm, 1.9 µm) was used while electrospray ionization (ESI) was used for the mass spectrometry. 18 compounds were identified including Vitexin (1), Schaftoside (2), Vicenin-2 (3), Apigenin-6, 8-di-C-arabinoside (4), Apigenin-7-O-β-d-glucoside (5), Carnosic acid (6), Apigenin-8-C-β-d-xylopyranoside (7), Prostratin (8), Aurantio-obtusin-β-d-glucoside (9), Royleanone (10), 5-hydroxy-7,3',4'-Trimethoxy flavonols (11), 6-Hydroxy-5,6-dehydrosugiol (12), 14-deoxycoleon (13), Arucadiol (14), Obtusinone-B (15), Trehalose (16), Citric acid (17) and Betaine (18). Among these, 6 compounds including (6), (8), (9), (16), (17) and (18) were identified first time within this genus and plant. Study highlights the importance of Premna microphylla Turcz. stem extract for strong therapeutic potential against oxidation-related diseases.
Collapse
Affiliation(s)
- Hong Duan
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Wei Wang
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yongxiang Li
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Ghulam Jilany Khan
- Department of Pharmacology, Faculty of Pharmacy (FOP), University of Central Punjab, Lahore, Pakistan; National Drug Screening Center of Pharmacokinetics and Pharmacodynamics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yuan Chen
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Tianci Shen
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Nina Bao
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Jing Hua
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin 541004, PR China
| | - Zhenglian Xue
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Kefeng Zhai
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin 541004, PR China.
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
2
|
Quorum sensing modulatory and biofilm inhibitory activity of Plectranthus barbatus essential oil: a novel intervention strategy. Arch Microbiol 2021; 203:1767-1778. [PMID: 33474610 DOI: 10.1007/s00203-020-02171-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/07/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
The essential oil (EO) from the roots of Plectranthus barbatus Andr. (Syn. Coleus forskohlii Briq.) was evaluated for quorum sensing (QS) inhibitory activity. P. barbatus EO was screened for inhibition of QS regulated violacein production in Chromobacterium violaceum (ATCC 12472) wild-type strain. At inhibitory (6.25% v/v) and sub-inhibitory concentrations (3.125% v/v) of the EO, dose-dependent response in the inhibition of violacein production was observed in C. violaceum. Similarly, sub-MIC (6.25% v/v) of P. barbatus EO disrupted QS regulated biofilm formation by 27.87% and inhibited swarming and twitching motility in Pseudomonas aeruginosa PA01 implying its anti-infective and QS modulatory activity. Fluorescence microscopy studies confirmed the disruption of biofilm formation by EO in P. aeruginosa PAO1. Promising antibacterial activity was recorded at concentrations as low as 3.12% v/v for Listeria monocytogenes (ATCC 13932) and at 6.25% v/v for both Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 25241) and Escherichia coli (ATCC 11775). Furthermore, significant dose-dependent inhibition was observed for biofilm formation and motility in all the tested pathogens in different treated concentrations. GC-MS analysis revealed α-pinene, endo-borneol, bornyl acetate, 1-Hexyl-2-Nitrocyclohexane as the major phytoconstituents. P. barbatus EO or its constituent compounds with QS modulatory, antimicrobial and biofilm inhibitory property could be potential new-age dietary source based intervention and preservation technologies.
Collapse
|
3
|
Yokotani K, Yamazaki Y, Shimura F, Umegaki K. Comparison of CYP Induction by Coleus forskohlii Extract and Recovery in the Small Intestine and Liver of Mice. Biol Pharm Bull 2020; 43:116-123. [PMID: 31902916 DOI: 10.1248/bpb.b19-00632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined CYP induction and recovery at various doses of Coleus forskohlii extract (CFE) to assess potential drug interactions by a mechanism involving intestinal CYP. Mice were administered diets with various doses of CFE up to 0.5% (equivalent to 700-800 mg/kg body weight) for 2 weeks, then CFE was withdrawn for 3 d. Changes in CYP activities and mRNA expression in the small intestine and liver were then evaluated. CFE induced CYP in the small intestine at a higher dose compared to the liver; CYP3A was induced at 0.5% and 0.005% CFE in the small intestine and liver, respectively. There was no sex difference in CFE dose for CYP induction. CYP induction quickly reverted after withdrawal of CFE, especially for CYP3A, in the small intestine; whereas, a gradual recovery was observed in the liver. In conclusion, CFE induced CYP in the small intestine and liver; however, a higher dose of CFE was needed for the small intestine. Moreover, the induction was soon recovered, suggesting actual interactions of CFE with prescription drugs are unlikely to occur through CYP in the small intestine.
Collapse
Affiliation(s)
- Kaori Yokotani
- Department of Food Safety and Management, Showa Women's University
| | | | - Fumio Shimura
- Graduate Schoool of Human Life Sciences, Jumonji University
| | - Keizo Umegaki
- Department of Food Safety and Management, Showa Women's University
| |
Collapse
|