1
|
Du H, Wang H, Chen Y, Zhou X. A machine learning-derived angiogenesis signature for clinical prognosis and immunotherapy guidance in colon adenocarcinoma. Sci Rep 2025; 15:19126. [PMID: 40450107 DOI: 10.1038/s41598-025-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
Colon adenocarcinoma (COAD) is one of the most prevalent malignancies worldwide and its prognosis is extremely poor. Angiogenesis has been linked to clinical outcomes, tumor progression, and treatment sensitivity. However, the role of angiogenesis in the COAD microenvironment and its interaction with immunotherapy remains unclear. In this study, an integrative machine learning approach, including ten algorithms, was used to construct a prognostic consensus angiogenesis-related signature (CARS) for COAD. The optimal CARS constructed using the RSF + StepCox [forward] algorithm had superior performance for clinical prognostic prediction and served as an independent risk predictor for COAD. Patients in the low-CARS group, characterized by immune activation, elevated tumor mutation/neoantigen burden, and greater responsiveness to immunotherapy, had a superior prognosis. Patients in the high-CARS group exhibited a poor prognosis with higher angiogenesis activity and immunosuppressive status, indicating lower immunotherapy benefits. However, axitinib and olaparib may be promising treatment options for such patients. Taken together, we constructed a prognostic CARS that provides prognostic stratification and elucidates the characteristics of the tumor microenvironment, which might guide the selection of personalized treatments for patients with COAD.
Collapse
Affiliation(s)
- Hengrui Du
- Department of Gastrointestinal surgery, Tengzhou Central People's Hospital, Tengzhou, 277500, China
| | - Haochen Wang
- Department of Interventional Radiology, Jining First People's Hospital, Jining, 272000, China
| | - Yuxiang Chen
- Department of Otolaryngology, Tengzhou Central People's Hospital, Tengzhou, 277500, China.
| | - Xixi Zhou
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, 277500, China.
| |
Collapse
|
2
|
Yang Y, Qiu YT, Li WK, Cui ZL, Teng S, Wang YD, Wu J. Multi-Omics analysis elucidates tumor microenvironment and intratumor microbes of angiogenesis subtypes in colon cancer. World J Gastrointest Oncol 2024; 16:3169-3192. [PMID: 39072166 PMCID: PMC11271793 DOI: 10.4251/wjgo.v16.i7.3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Angiogenesis plays an important role in colon cancer (CC) progression. AIM To investigate the tumor microenvironment (TME) and intratumor microbes of angiogenesis subtypes (AGSs) and explore potential targets for antiangiogenic therapy in CC. METHODS The data were obtained from The Cancer Genome Atlas database and Gene Expression Omnibus database. K-means clustering was used to construct the AGSs. The prognostic model was constructed based on the differential genes between two subtypes. Single-cell analysis was used to analyze the expression level of SLC2A3 on different cells in CC, which was validated by immunofluorescence. Its biological functions were further explored in HUVECs. RESULTS CC samples were grouped into two AGSs (AGS-A and AGS-B) groups and patients in the AGS-B group had poor prognosis. Further analysis revealed that the AGS-B group had high infiltration of TME immune cells, but also exhibited high immune escape. The intratumor microbes were also different between the two subtypes. A convenient 6-gene angiogenesis-related signature (ARS), was established to identify AGSs and predict the prognosis in CC patients. SLC2A3 was selected as the representative gene of ARS, which was higher expressed in endothelial cells and promoted the migration of HUVECs. CONCLUSION Our study identified two AGSs with distinct prognoses, TME, and intratumor microbial compositions, which could provide potential explanations for the impact on the prognosis of CC. The reliable ARS model was further constructed, which could guide the personalized treatment. The SLC2A3 might be a potential target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Yu-Ting Qiu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Wen-Kun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Zi-Lu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shuo Teng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Ya-Dan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| |
Collapse
|
3
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
4
|
Wang L, Yuan PQ, Taché Y. Vasculature in the mouse colon and spatial relationships with the enteric nervous system, glia, and immune cells. Front Neuroanat 2023; 17:1130169. [PMID: 37332321 PMCID: PMC10272736 DOI: 10.3389/fnana.2023.1130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 06/20/2023] Open
Abstract
The distribution, morphology, and innervation of vasculature in different mouse colonic segments and layers, as well as spatial relationships of the vasculature with the enteric plexuses, glia, and macrophages are far from being complete. The vessels in the adult mouse colon were stained by the cardiovascular perfusion of wheat germ agglutinin (WGA)-Alexa Fluor 448 and by CD31 immunoreactivity. Nerve fibers, enteric glia, and macrophages were immunostained in the WGA-perfused colon. The blood vessels entered from the mesentery to the submucosa and branched into the capillary networks in the mucosa and muscularis externa. The capillary net formed anastomosed rings at the orifices of mucosa crypts, and the capillary rings surrounded the crypts individually in the proximal colon and more than two crypts in the distal colon. Microvessels in the muscularis externa with myenteric plexus were less dense than in the mucosa and formed loops. In the circular smooth muscle layer, microvessels were distributed in the proximal, but not the distal colon. Capillaries did not enter the enteric ganglia. There were no significant differences in microvascular volume per tissue volume between the proximal and distal colon either in the mucosa or muscularis externa containing the myenteric plexus. PGP9.5-, tyrosine hydroxylase-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers were distributed along the vessels in the submucosa. In the mucosa, PGP9.5-, CGRP-, and vasoactive intestinal peptide (VIP)-immunoreactive nerves terminated close to the capillary rings, while cells and processes labeled by S100B and glial fibrillary acidic protein were distributed mainly in the lamina propria and lower portion of the mucosa. Dense Iba1 immunoreactive macrophages were closely adjacent to the mucosal capillary rings. There were a few macrophages, but no glia in apposition to microvessels in the submucosa and muscularis externa. In conclusion, in the mouse colon, (1) the differences in vasculature between the proximal and distal colon were associated with the morphology, but not the microvascular amount per tissue volume in the mucosa and muscle layers; (2) the colonic mucosa contained significantly more microvessels than the muscularis externa; and (3) there were more CGRP and VIP nerve fibers found close to microvessels in the mucosa and submucosa than in the muscle layers.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Pu-Qing Yuan
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
5
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
6
|
Wang J, Li B, Yang S, Ma C, Liu K, Chen X, Cui W. Upregulation of INHBA mediated by the transcription factor BHLHE40 promotes colon cancer cell proliferation and migration. J Clin Lab Anal 2022; 36:e24539. [PMID: 35689549 PMCID: PMC9279979 DOI: 10.1002/jcla.24539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colon cancer is highly prevalent, and cell proliferation and migration are major reasons for its progression to malignancy. The upregulation of INHBA, a glycoprotein hormone that regulates the secretion of pituitary hormones, is documented to be oncogenic in numerous cancers, consisting of breast, gastric, and ovarian cancer. Herein, we assessed the role of INHBA in the proliferation along with the migration of colon cancer cells. METHODS TCGA datasets were used to assess INHBA expression and its correlation with prognosis in colon cancer patients. Analyses on JASPAR, PROMO, and ENCODE databases, uncovered high correlation between INHBA and BHLHE40. Western blot and RT-qPCR analysis were used to determine protein and mRNA levels. Cell transfection inhibited the expression of INHBA and BHLHE40. Cell proliferation rates were determined using CCK8 analysis. Wound healing assays were adopted to explore cell migration. RESULTS INHBA is markedly elevated in colon cancer tissues along with cells and is a predictive factor for patient's prognosis with colon cancer. INHBA silencing suppressed colon cancer cell proliferation and migration. Furthermore, we confirmed the association of INHBA with BHLHE40 in colon cancer cells. BHLHE40 could directly modulates INHBA expression. Here, we show that BHLHE40 modulates the expression of INHBA, which influences the proliferation, and migration of colon cancer cells. CONCLUSION INHBA acts as an oncogene in colon cancer and it can be regulated by the transcription factor BHLHE40.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Colorectal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Bo Li
- Department of Colorectal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Shaohui Yang
- Department of Colorectal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Chenyang Ma
- Department of Colorectal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xue Chen
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Cui
- Department of Colorectal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|