1
|
Shaterabadi D, Zamani Sani M, Rahdan F, Taghizadeh M, Rafiee M, Dorosti N, Dianatinasab A, Taheri-Anganeh M, Asadi P, Khatami SH, Movahedpour A. MicroRNA biosensors in lung cancer. Clin Chim Acta 2024; 552:117676. [PMID: 38007056 DOI: 10.1016/j.cca.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.
Collapse
Affiliation(s)
- Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY 82070, USA
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Xue P, Zhang G, Zhang H, Cui S, Zhang L, Yu T, Xiao M, Li L, Lu X. A miR-15a related polymorphism affects NSCLC prognosis via altering ERCC1 repair to platinum-based chemotherapy. J Cell Mol Med 2022; 26:5439-5451. [PMID: 36181289 PMCID: PMC9639052 DOI: 10.1111/jcmm.17566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum‐based chemotherapy is regarded as a preferential curative‐intent option for non‐small cell lung cancer (NSCLC), while the acquired drug resistance has become a major obstacle that limits its clinical application. Since the repair efficiency of tumour cells to platinum‐DNA adducts plays a crucial role in chemotherapy resistance, we aimed to explore whether several meaningful polymorphisms of DNA repair genes were associated with the benefits of platinum‐based chemotherapy in NSCLC patients. Firstly, six single nucleotide polymorphisms (SNPs) located in the 3'untranslated region (3'UTR) of three DNA repair genes were detected in 246 NSCLC patients receiving platinum‐based chemotherapy and analysed the correlation of these candidate SNPs with the overall survival. Cox proportional hazard model showed that NSCLC patients carrying ERCC1 rs3212986 AA genotype had a shorter overall survival compared to those with CC. Mechanistically, we performed tumour chemosensitivity assay to observe the convincing linkage of rs3212986 polymorphism with ERCC1 expression and cisplatin sensitivity. The subsequent in vitro experiments identified that rs3212986 polymorphism altered the post‐transcriptional regulation of ERCC1 via affecting the binding of miR‐15a, and further changed the sensitivity to platinum analogue. It reminded that patients carrying ERCC1 rs3212986 CC homozygote were expected to respond better to platinum‐based chemotherapy due to a lower expression of ERCC1. Compared with previous studies, our current comprehensive study suggested that rs3212986, a 3'UTR polymorphism in ERCC1, might have clinical relevance in predicting the prognosis of NSCLC patients receiving platinum‐based chemotherapy.
Collapse
Affiliation(s)
- Ping Xue
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hongchao Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Izzotti A, Coronel Vargas G, Pulliero A, Coco S, Colarossi C, Blanco G, Agodi A, Barchitta M, Maugeri A, CT-ME-EN Cancer Registry Workers, Oliveri Conti G, Ferrante M, Sciacca S. Identification by MicroRNA Analysis of Environmental Risk Factors Bearing Pathogenic Relevance in Non-Smoker Lung Cancer. J Pers Med 2021; 11:jpm11070666. [PMID: 34357133 PMCID: PMC8307636 DOI: 10.3390/jpm11070666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA and DNA adduct biomarkers may be used to identify the contribution of environmental pollution to some types of cancers. The aim of this study was to use integrated DNA adducts and microRNAs analyses to study retrospectively the contribution of exposures to environmental carcinogens to lung cancer in 64 non-smokers living in Sicily and Catania city near to the Etna volcano. MicroRNAs were extracted from cancer lung biopsies, and from the surrounding lung normal tissue. The expression of 2549 human microRNAs was analyzed by microarray. Benzo(a)Pyrene-DNA adducts levels were analyzed in the patients’ blood by HPLC−fluorescence detection. Correlations between tetrols and environmental exposures were calculated using Pearson coefficients and regression variable plots. Compared with the healthy tissue, 273 microRNAs were downregulated in lung cancer. Tetrols levels were inversely related both with the distance from Etna and years since smoking cessation, but they were not significantly correlated to environmental exposures. The analysis of the microRNA environmental signatures indicates the contribution of environmental factors to the analyzed lung cancers in the following decreasing rank: (a) car traffic, (b) passive smoke, (c) radon, and (d) volcano ashes. These results provide evidence that microRNA analysis can be used to retrospectively investigate the contribution of environmental factors in human lung cancer occurring in non-smokers.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| | | | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (G.C.V.); (A.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Cristina Colarossi
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| | - Giuseppina Blanco
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | | | - Gea Oliveri Conti
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
- Correspondence: ; Tel.: +39-095-378-2133; Fax: +39-095-378-2177
| | - Margherita Ferrante
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy;
| | - Salvatore Sciacca
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| |
Collapse
|
4
|
He T, Shen H, Wang S, Wang Y, He Z, Zhu L, Du X, Wang D, Li J, Zhong S, Huang W, Yang H. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:572-583. [PMID: 33230458 PMCID: PMC7562961 DOI: 10.1016/j.omtn.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Aberrant activation of nuclear factor κB (NF-κB)/RELA is often found in lung adenocarcinoma (LUAD). In this study, we determined that microRNA-3613-5p (miR-3613-5p) plays a crucial role in RELA-mediated post-transcriptional regulation of LUAD cell proliferation. Expression of miR-3613-5p in clinical LUAD specimens is associated with poor prognosis in LUAD. Upregulation of miR-3613-5p promotes LUAD cell proliferation in vitro and in vivo. Our results suggested a mechanism whereby miR-3613-5p expression is induced by RELA through its direct interaction with JUN, thereby stimulating the AKT/mitogen-activated protein kinase (MAPK) pathway by directly targeting NR5A2. In addition, we also found that phosphorylation of AKT1 and MAPK3/1 co-transactivates RELA, thus constituting a RELA/JUN/miR-3613-5p/NR5A2/AKT1/MAPK3/1 positive feedback loop, leading to persistent NF-κB activation. Our findings also revealed that miR-3613-5p plays an oncogenic role in LUAD by promoting cell proliferation and acting as a key regulator of the positive feedback loop underlying the link between the NF-κB/RELA and AKT/MAPK pathways.
Collapse
Affiliation(s)
- Tao He
- Department of Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongyou Shen
- Emergency Department, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Shuangmiao Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanfang Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiwei He
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xinyue Du
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Dan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiao Li
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhen Zhong
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
5
|
Liang JJ, Wang JY, Zhang TJ, An GS, Ni JH, Li SY, Jia HT. MiR-509-3-5p-NONHSAT112228.2 Axis Regulates p21 and Suppresses Proliferation and Migration of Lung Cancer Cells. Curr Top Med Chem 2020; 20:835-846. [DOI: 10.2174/1568026620666200306102713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
Background:
Although the involvement of individual microRNA and lncRNA in the regulation
of p21 expression has largely been evidenced, less is known about the roles of functional interactions
between miRNAs and lncRNAs in p21 expression. Our previous work demonstrated that miR-509-
3-5p could block cancer cell growth.
Methods:
To gain an insight into the role of miR-509-3-5p in the regulation of p21 expression, we performed
in silico prediction and showed that miR-509-3-5p might target the NONHSAT112228.2, a
sense-overlapping lncRNA transcribed by a non-code gene overlapping with p21 gene. Mutation and
luciferase report analysis suggested that miR-509-3-5p could target NONHSAT112228.2, thereby blocking
its expression. Consistently, NONHSAT112228.2 expression was inversely correlated with both
miR-509-3-5p and p21 expression in cancer cells. Ectopic expression of miR-509-3-5p and knockdown
of NONHSAT112228.2 both promoted proliferation and migration of cancer cells.
Results:
Interestingly, high-expression of NONHSAT112228.2 accompanied by low-expression of p21
was observed in lung cancer tissues and associated with lower overall survival.
Conclusion:
Taken together, our study found a new regulatory pathway of p21, in which MiR-509-3-5p
functionally interacts with NONHSAT112228.2 to release p21 expression. MiR-509-3-5p—
NONHSAT112228.2 regulatory axis can inhibit the proliferation and migration of lung cancer cells.
Collapse
Affiliation(s)
- Jing-Jing Liang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun-Yi Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Tong-Jia Zhang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guo-Shun An
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ju-Hua Ni
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
6
|
Yu X, Zheng H, Sun R, Qian X, Jiang P, Yang B, Liu J, Li X. MicroRNA-425-5p Inhibits Lung Cancer Cell Growth in Vitro and in Vivo by Downregulating TFIIB-Related Factor 2. Technol Cancer Res Treat 2020; 19:1533033819901115. [PMID: 31964245 PMCID: PMC6978817 DOI: 10.1177/1533033819901115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the most common cancer type with increasingly high incidence. MicroRNAs provide the potential biomarkers for lung cancer treatment. Thus, we aimed to investigate the function of microRNA-425-5p in lung cancer development and the underlying mechanisms. MicroRNA-425-5p overexpression inhibited A549 lung cancer cell proliferation in vitro and in vivo. On the other hand, microRNA-425-5p inhibition increased A549 proliferation. Mechanistically, the underlying mechanism by which microRNA-425-5p inhibits lung cancer cell growth was mediated through its ability in targeting and downregulating the TFIIB-related factor 2. Our results for the first time identified microRNA-425-5p as a tumor suppressor in lung cancer. Thus, microRNA-425-5p may serve as a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Xi Yu
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Hong Zheng
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Rongfei Sun
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Xuejiao Qian
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Ping Jiang
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin,
China
| | - Jiangbo Liu
- Department of Respiratory, Tianjin First Central Hospital, Tianjin,
China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin,
China
| |
Collapse
|
7
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
8
|
Chen W, Zhuang X, Qi R, Qiao T. MiR-302a-5p suppresses cell proliferation and invasion in non-small cell lung carcinoma by targeting ITGA6. Am J Transl Res 2019; 11:4348-4357. [PMID: 31396340 PMCID: PMC6684888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
MicroRNA-302a-5p (miR-302a-5p) has been implicated in several cancers; however, its role in human non-small cell lung carcinoma (NSCLC) remains unknown. In this study, we showed that miR-302a-5p is downregulated in NSCLC tissues and cell lines. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays showed that overexpression of a miR-302a-5p mimic suppressed NSCLC cell proliferation, which was confirmed by the results of a cell cycle assay. Overexpression of miR-302a-5p also reduced the migration and invasion of NSCLC cells. Additionally, miR-302a-5p overexpression significantly inhibited NSCLC growth and metastasis in a mouse xenograft model. With regard to the underlying mechanism, integrin α6 (ITGA6) mRNA was shown to be a novel target of miR-302a-5p, and overexpression of ITGA6 attenuated the inhibitory effects of miR-302a-5p on the proliferation and migration of NSCLC cells. In clinical NSCLC samples, miR-302a-5p expression was negatively correlated with ITGA6 expression, which was high in the samples. Collectively, these results indicate that miR-302a-5p acts as a tumor suppressor in NSCLC by directly targeting ITGA6 mRNA and may be useful as a theranostic biomarker of NSCLC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, Jinshan Hospital, Fudan University Shanghai 201500, China
| | - Xibing Zhuang
- Department of Oncology, Jinshan Hospital, Fudan University Shanghai 201500, China
| | - Ruixue Qi
- Department of Oncology, Jinshan Hospital, Fudan University Shanghai 201500, China
| | - Tiankui Qiao
- Department of Oncology, Jinshan Hospital, Fudan University Shanghai 201500, China
| |
Collapse
|
9
|
Abstract
Over the last years, epigenetic changes, including DNA methylation and histone modifications detected in early tumorigenesis and cancer progression, have been proposed as biomarkers for cancer detection, tumor prognosis, and prediction to treatment response. Importantly for the clinical use of DNA methylation biomarkers, specific methylation signatures can be detected in many body fluids including serum/plasma samples. Several of these potential epigenetic biomarkers detected in women's cancers, colorectal cancers, prostate, pancreatic, gastric, and lung cancers are discussed. Studies conducted in breast cancer, for example, found that aberrant methylation detection of several genes in serum DNA and genome-wide epigenetic change could be used for early breast cancer diagnosis and prediction of breast cancer risk. In colorectal cancers, numerous studies have been conducted to identify specific methylation markers important for CRC detection and in fact clinical assays evaluating the methylation status of SEPT19 gene and vimentin, became commercially available. Furthermore, some epigenetic changes detected in gastric washes have been suggested as potential circulating noninvasive biomarkers for the early detection of gastric cancers. For the early detection of prostate cancer, few epigenetic markers have shown a better sensitivity and specificity than serum PSA, indicating that the inclusion of these markers together with current screening tools, could improve early diagnosis and may reduce unnecessary repeat biopsies. Similarly, in pancreatic cancers, abnormal DNA methylation of several genes including NPTX2, have been suggested as a diagnostic biomarker. Epigenetic dysregulation was also observed in several tumor suppressor genes and miRNAs in lung cancer patients, suggesting the important role of these changes in cancer initiation and progression. In conclusion, epigenetic changes detected in biological fluids could play an essential role in the early detection of several cancer types and this may have a great impact for the cancer precision medicine field.
Collapse
|
10
|
Distinct Angiogenic microRNA-mRNA Expression Profiles Among Subtypes of Lung Adenocarcinoma. Pathol Oncol Res 2019; 26:1089-1096. [DOI: 10.1007/s12253-019-00664-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
|
11
|
Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, Chinnappan R, Akhtar MH. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2018; 164:93-103. [PMID: 30366148 DOI: 10.1016/j.jpba.2018.10.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is undoubtedly one of the most serious health issues of the 21 st century. It is the second leading cause of cancer-related deaths in both men and women worldwide, accounting for about 1.5 million deaths annually. Despite advances in the treatment of lung cancer with new pharmaceutical products and technological improvements, morbidity and mortality rates remains a significant challenge for the cancer biologists and oncologists. The vast majority of lung cancer patients present with advanced-stage of pathological process that ultimately leads to poor prognosis and a five-year survival rate less than 20%. Early and accurate screening and analysis using cost-effective means are urgently needed to effectively diagnose the disease, improve the survival rate or to reduce mortality and morbidity associated with lung cancer patients. Thus, the only hope for early recognition of risk factors and timely diagnosis and treatment of lung cancer is biosensors technology. Novel biosensing based diagnostics approaches for predicting metastatic risks are likely to have significant therapeutic and clinical impact in the near future. This article systematically provides a brief overview of various biosensing platforms for identification of lung cancer disease biomarkers, with a specific focus on recent advancements in electrochemical and optical biosensors, analytical performances of different biosensors, challenges and further research opportunities for routine clinical analysis.
Collapse
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan; Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan.
| | - Shadil Ibrahim Wani
- Department of Immunology and Molecular Medicine,Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mati-Ur-Rehman
- Department of Radiological Sciences, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Bilal Ahmed
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Shugufta Abrahim
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Amir Savardashtaki
- Department of Environmental Sciences, Cyprus International University, Nicosia, Cyprus
| | - Ghazaal Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus International University, Nicosia, Cyprus
| | - Molood Gandomani
- Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Mahmood H Akhtar
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea
| |
Collapse
|
12
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
13
|
Chen W, Chu S, Li H, Qiu Y. MicroRNA-146a-5p enhances ginsenoside Rh2-induced anti-proliferation and the apoptosis of the human liver cancer cell line HepG2. Oncol Lett 2018; 16:5367-5374. [PMID: 30197683 DOI: 10.3892/ol.2018.9235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is one of the leading causes of malignancy-associated mortality worldwide and its clinical therapy remains very challenging. Ginsenoside Rh2 (Rh2) has been reported to have antitumor effects on some types of cancer, including liver cancer. However, its regulatory mechanism has not been extensively evaluated. In the present study, Rh2 increased the expression of microRNA (miR)-200b-5p, miR-224-3p and miR-146a-5p, and decreased the expression of miR-26b-3p and miR-29a-5p. Of the three upregulated miRs, miR-146a-5p exhibited the highest fold elevation. In accordance with a previous study, Rh2 effectively inhibited the survival of liver cancer cells in vitro and in a mouse model. In addition, it was observed that Rh2 markedly promoted liver cancer apoptosis and inhibited colony formation. Cell apoptosis and the inhibition of cell survival as well as colony formation induced by Rh2 were enhanced and weakened by miR-146a-5p overexpression and inhibition, respectively. The results of the present study provide further evidence of the antitumor effect of Rh2 in liver cancer and also demonstrate that this effect may be mediated via the regulation of miR-146a-5p expression in the liver cancer cell line HepG2. The results indicated that miR-146a-5p may be a promising regulatory factor in Rh2-mediated effects in liver cancer.
Collapse
Affiliation(s)
- Weiwen Chen
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Medical Laboratories, Guangzhou Twelfth People's Hospital, Guangzhou, Guangdong 510620, P.R. China
| | - Shuai Chu
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Li
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yurong Qiu
- Medical Laboratories, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
14
|
Chen M, Peng W, Hu S, Deng J. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer. Oncol Lett 2018; 16:4754-4760. [PMID: 30197681 DOI: 10.3892/ol.2018.9204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/12/2017] [Indexed: 01/29/2023] Open
Abstract
Certain studies have indicated that naringin possesses various pharmacological activities including anti-aging, anti-oxidation, anticancer, cardiovascular and cerebrovascular disease prevention, in addition to anti-hepatic effects. The present study explores the anticancer effect of naringin on human small cell lung cancer H69AR cells. Cell growth and apoptosis rates of H69AR cells were measured by MTT or flow cytometry, which demonstrated naringin suppressed cell growth and induced apoptosis of H69AR cells. MicroRNA (miR)-126 expression and levels of phosphorylated protein kinase B (AKT), mechanistic target of rapamycin (mTOR), nuclear factor (NF)-κB and vascular cell adhesion molecule 1 (VCAM-1) proteins were detected by quantitative polymerase chain reaction and western blotting. It was identified that naringin increased miR-126 expression and suppressed the phosphorylation of AKT, mTOR, NF-κB and VCAM-1 proteins in H69AR cells. Suppression of miR-126 expression reduced the anticancer effects of naringin on H69AR cells, reversed the naringin-induced reduction of phosphoinositide 3-kinase/AKT/mTOR, and suppressed VCAM-1 protein levels. However, close of miR-126 expression did not affect the levels of NF-κB protein in H69AR cells. In summary, naringin exhibits its anti-cancer effect by suppressing cell growth of small cell lung cancer cells through miR-126/VCAM-1 signaling pathway.
Collapse
Affiliation(s)
- Mingjiu Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shifeng Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jie Deng
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
15
|
Han L, Chen W, Xia Y, Song Y, Zhao Z, Cheng H, Jiang T. MiR-101 inhibits the proliferation and metastasis of lung cancer by targeting zinc finger E-box binding homeobox 1. Am J Transl Res 2018; 10:1172-1183. [PMID: 29736210 PMCID: PMC5934576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are involved in the development and progression of lung cancer. MicroRNA-101 (miR-101) displays crucial properties in non-small cell lung cancer (NSCLC) by negatively regulating cell proliferation and invasion, but the underlying molecular mechanisms remain largely unknown. In this study, we found that miR-101 was underexpressed while zinc finger E-box binding homeobox 1 (ZEB1) was highly upregulated in NSCLC tissues and cells. The downregulation of miR-101 was positively associated with lymph node metastasis and poor prognosis of NSCLC patients. Dual-luciferase reporter assay showed that miR-101 directly targeted ZEB1 in NSCLC cells. Enforced expression of miR-101 significantly inhibited NSCLC cell proliferation, apoptosis resistance, migration, and invasion in vitro, which were attenuated by ZEB1 overexpression and phenocopied by ZEB1 knockdown, respectively. Consistently, miR-101 retarded NSCLC growth and metastasis in vivo. The findings indicated that miR-101 suppressed NSCLC growth and metastasis by targeting ZEB1, thereby providing new evidence of miR-101 as a potential therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Le Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi ProvinceXi’an 710038, Shaanxi, China
| | - Wenjuan Chen
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi ProvinceXi’an 710038, Shaanxi, China
| | - Yanmin Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Yangrong Song
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Zheng Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Hao Cheng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| |
Collapse
|
16
|
Abstract
microRNAs (miRs) are targets for genomic aberrations and emerging treatments against cancer. It has been demonstrated that targeting miR-569 may potentially benefit patients with ovarian or breast cancer. However, the exact roles of miR-569 remain unclear in human lung cancer cells. Using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), it was demonstrated that miR-569 expression was consistently decreased in lung cancer cells. As well as cell proliferation and migration inhibition, apoptosis and cell arrest at the G1 phase were induced following reversion of miR-569 expression in lung cancer cells. The present study demonstrated that miR-569 was able to downregulate FOS and high mobility group A2 mRNA and protein expression using RT-qPCR and western blot analysis. The observed role of miRNA-569 in lung cancer cells in the present study suggested that it may be a novel and promising therapeutic target, and a novel biomarker for detecting lung cancer.
Collapse
Affiliation(s)
- Yi Ping Zheng
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Linxia Wu
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Jie Gao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| | - Yanfu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical College, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
17
|
Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma. Oncotarget 2018; 7:28920-34. [PMID: 27081085 PMCID: PMC5045367 DOI: 10.18632/oncotarget.8713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/28/2016] [Indexed: 01/07/2023] Open
Abstract
Herein, we aimed at identifying global transcriptome microRNA (miRNA) changes and miRNA target genes in lung adenocarcinoma. Samples were selected as training (N = 24) and independent validation (N = 34) sets. Tissues were microdissected to obtain >90% tumor or normal lung cells, subjected to miRNA transcriptome sequencing and TaqMan quantitative PCR validation. We further integrated our data with published miRNA and mRNA expression datasets across 1,491 lung adenocarcinoma and 455 normal lung samples. We identified known and novel, significantly over- and under-expressed (p ≤ 0.01 and FDR≤0.1) miRNAs in lung adenocarcinoma compared to normal lung tissue: let-7a, miR-10a, miR-15b, miR-23b, miR-26a, miR-26b, miR-29a, miR-30e, miR-99a, miR-146b, miR-181b, miR-181c, miR-421, miR-181a, miR-574 and miR-1247. Validated miRNAs included let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-200b; higher levels of miR-21 expression were associated with lower patient survival (p = 0.042). We identified a regulatory network including miR-15b and miR-155, and transcription factors with prognostic value in lung cancer. Our findings may contribute to the development of treatment strategies in lung adenocarcinoma.
Collapse
|
18
|
Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, Zhang L, Cao P, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget 2018; 7:25683-97. [PMID: 27028860 PMCID: PMC5041936 DOI: 10.18632/oncotarget.8361] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Liver metastasis accounts for many of the cancer deaths in patients. Effective treatment for metastatic liver tumors is not available. Here, we provide evidence for the role of miR-18a in the induction of liver M1 (F4/80+interferon gamma (IFNγ)+IL-12+) macrophages. We found that miR-18a encapsulated in grapefruit-derived nanovector (GNV) mediated inhibition of liver metastasis that is dependent upon the induction of M1 (F4/80+IFNγ+IL-12+) macrophages; depletion of macrophages eliminated its anti-metastasis effect. Furthermore, the miR-18a mediated induction of macrophage IFNγ by targeting IRF2 is required for subsequent induction of IL-12. IL-12 then activates natural killer (NK) and natural killer T (NKT) cells for inhibition of liver metastasis of colon cancer. This conclusion is supported by the fact that knockout of IFNγ eliminates miR-18a mediated induction of IL-12, miR-18a treatment has an anti-metastatic effects in T cell deficient mice but there is no anti-metastatic effect on NK and NKT deficient mice. Co-delivery of miR-18a and siRNA IL-12 to macrophages did not result in activation of co-cultured NK and NKT cells. Taken together our results indicate that miR-18a can act as an inhibitor for liver metastasis through induction of M1 macrophages.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Program in Biostatistics, Bioinformatics and Systems Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abhilash Samykutty
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoying Zhuang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pengxiao Cao
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Donald Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex VA Medical Center, Louisville, KY 40206, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
19
|
Liu S, Ge X, Su L, Zhang A, Mou X. MicroRNA-454 inhibits non‑small cell lung cancer cells growth and metastasis via targeting signal transducer and activator of transcription-3. Mol Med Rep 2017; 17:3979-3986. [PMID: 29286124 DOI: 10.3892/mmr.2017.8350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the most common type of cancers and the leading cause of cancer‑related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases. Emerging studies have suggested that microRNAs are dysregulated in NSCLC and serve important roles in NSCLC initiation and development. However, to the best of our knowledge, the expression, roles and molecular mechanism of microRNA‑454 (miR‑454) have not been investigated in NSCLC. In the present study, miR‑454 was demonstrated to be significantly downregulated in NSCLC tissues and cell lines, as assessed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Reduced miR‑454 expression was significantly correlated with aggressive clinicopathological features in NSCLC. In addition, upregulation of miR‑454 suppressed proliferation, migration and invasion NSCLC cells, as assessed by Cell Counting Kit‑8 and in vitro migration and invasion assays, respectively. Furthermore, bioinformatics analysis identified STAT3 as a direct target gene of miR‑454, and STAT3 knockdown was demonstrated to simulate the effects of miR‑454 overexpression in NSCLC. In conclusion, the present study provided convincing evidence that miR‑454 is downregulated in NSCLC, and regulates growth and metastasis by directly targeting STAT3, which suggests that miR‑454 may be an efficient therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuliang Liu
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xingping Ge
- Department of Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lingfei Su
- Department of Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Aifeng Zhang
- Department of Outpatient, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xuri Mou
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
20
|
Ye MF, Zhang JG, Guo TX, Pan XJ. MiR-504 inhibits cell proliferation and invasion by targeting LOXL2 in non small cell lung cancer. Biomed Pharmacother 2017; 97:1289-1295. [PMID: 29156517 DOI: 10.1016/j.biopha.2017.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in tumor initiation and development. The aim of the study was to explore the clinicopathological role and functional effects of miR-504 in non small cell lung cancer (NSCLC). METHODS Quantitative reverse transcription polymerase chain reaction (QRT-PCR) was applied to detect the expression of miR-504 in 55 cases of NSCLC tissues and matched adjacent normal tissues in NSCLC patients. MTT, colony formation and transwell invasion assays were performed to evaluate the effects of miR-504 on cell proliferation and invasion, respectively. Dual luciferase reporter assay was used to verify that LOXL2 was a direct target of miR-504. QRT-PCR and western blot analysis were performed to analyze mRNA and protein expression. RESULTS In the study, we demonstrated that miR-504 was notably downregulated in NSCLC tissues compared with adjacent normal tissues. Lower miR-504 expression positively correlated with lymph node metastasis and advanced TNM stage in patients. Furthermore, upregulation of miR-504 significantly inhibited cell proliferation, cell invasion and EMT process of NSCLC. QRT-PCR, western blot and luciferase reporter assays confirmed that miR-504 could bind to LOXL2 3'UTR region and regulate its expression. Moreover, ectopic expression of LOXL2 could rescue the inhibiting effects on cell proliferation and invasion induced by miR-504 in NSCLC cells. CONCLUSIONS Our results indicated that miR-504 functioned as a tumor suppressor in NSCLC and may serve as a target of NSCLC treatment.
Collapse
Affiliation(s)
- Ming-Fan Ye
- Department of Thoracic Surgery, FuJian Provincial Hospital, Fuzhou 350001, People's Republic of China.
| | - Ji-Guang Zhang
- Department of Thoracic Surgery, FuJian Provincial Hospital, Fuzhou 350001, People's Republic of China.
| | - Tian-Xing Guo
- Department of Thoracic Surgery, FuJian Provincial Hospital, Fuzhou 350001, People's Republic of China.
| | - Xiao-Jie Pan
- Department of Thoracic Surgery, FuJian Provincial Hospital, Fuzhou 350001, People's Republic of China.
| |
Collapse
|
21
|
Yang W, Zhou C, Luo M, Shi X, Li Y, Sun Z, Zhou F, Chen Z, He J. MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget 2017; 7:16703-15. [PMID: 26934648 PMCID: PMC4941345 DOI: 10.18632/oncotarget.7697] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/06/2016] [Indexed: 12/17/2022] Open
Abstract
Our previous study found that miR-652-3p is markedly upregulated in the serum of patients with NSCLC and suggesting that miR-652-3p is a potential biomarker for the early diagnosis of NSCLC. In this study, we detected the expression of miR-652-3p in NSCLC tumor tissues and cell lines and investigated the effect of miR-652-3p on the proliferation and metastasis of NSCLC cells. Our results showed that the expression of miR-652-3p was significantly upregulated in tumor tissues of 50 patients with NSCLC, and it was significantly higher in patients with positive lymph node metastasis, advanced TNM stage and poor prognosis. Using functional analyses by overexpressing or suppressing miR-652-3p in NSCLC cells, we demonstrated that miR-652-3p promoted cell proliferation, migration, invasion and inhibited cell apoptosis. Moreover, the lethal(2) giant larvae 1 (Lgl1) was identified as a direct and functional target of miR-652-3p. Overexpression or knockdown of miR-652-3p led to decreased or increased expression of Lgl1 protein, and the binding site mutation of LLGL1 3'UTR abrogated the responsiveness of the luciferase reporters to miR-652-3p. Overexpression of Lgl1 partially attenuated the function of miR-652-3p. Collectively, these results revealed that miR-652-3p execute a tumor-promoter function in NSCLC through direct binding and regulating the expression of Lgl1.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Mei Luo
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zengmiao Sun
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fang Zhou
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
22
|
Liu Y, Xing Y, Cai L. [Role of Hippo Signaling Pathway in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:629-634. [PMID: 28935017 PMCID: PMC5973372 DOI: 10.3779/j.issn.1009-3419.2017.09.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
肺癌是全世界范围内肿瘤相关性死亡的首要原因,每年死亡人数超过100万人,占全球癌症死亡人数的五分之一。虽然目前在手术、放化疗、靶向治疗、免疫治疗肺癌方面取得了一定进展,但患者的预后仍不理想。因此,亟待寻找评价预后的分子标志物和肺癌的治疗新靶点,为肺癌患者提供生存获益的有效方法。近年来,Hippo信号通路逐渐成为国内外肿瘤研究领域中新兴且热门的研究方向。Hippo信号通路激活时,其核心组件MST/MOB、LATS1/2等能抑制转录的共激活剂YAP/TAZ的转录,二者被磷酸化并滞留在细胞浆中,从而抑制肺癌的发生发展。因此Hippo信号通路在临床应用中的潜在价值也越来越受关注。本篇文章总结了Hippo信号通路核心组成元件及上下游调控因子在肺癌形成进展过程中的重要作用和分子机制,并对Hippo信号通路的研究前景进行展望。
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| |
Collapse
|
23
|
Pan JY, Sun CC, Bi ZY, Chen ZL, Li SJ, Li QQ, Wang YX, Bi YY, Li DJ. miR-206/133b Cluster: A Weapon against Lung Cancer? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:442-449. [PMID: 28918043 PMCID: PMC5542379 DOI: 10.1016/j.omtn.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
Lung cancer is a deadly disease that ends numerous lives around the world. MicroRNAs (miRNAs) are a group of non-coding RNAs involved in a variety of biological processes, such as cell growth, organ development, and tumorigenesis. The miR-206/133b cluster is located on the human chromosome 6p12.2, which is essential for growth and rebuilding of skeletal muscle. The miR-206/133b cluster has been verified to be dysregulated and plays a crucial role in lung cancer. miR-206 and miR-133b participate in lung tumor cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. The mechanisms are sophisticated, involving various target genes and molecular pathways, such as MET, EGFR, and the STAT3/HIF-1α/VEGF signal pathway. Hence, in this review, we summarize the role and potential mechanisms of the miR-206/133b cluster in lung cancer.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan 430079 Hubei, P.R. China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Qing-Qun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yu-Xuan Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yong-Yi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| |
Collapse
|
24
|
Tomasetti M, Amati M, Neuzil J, Santarelli L. Circulating epigenetic biomarkers in lung malignancies: From early diagnosis to therapy. Lung Cancer 2017; 107:65-72. [DOI: 10.1016/j.lungcan.2016.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/20/2016] [Accepted: 05/29/2016] [Indexed: 12/18/2022]
|
25
|
陈 帅, 周 永, 陈 颖, 陈 小, 李 光, 雷 玉, 田 林, 赵 光, 黄 秋, 黄 云. [Expression profile of miR-501-5p in lung adenocarcinoma patients from Xuanwei area]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:354-359. [PMID: 28377352 PMCID: PMC6780435 DOI: 10.3969/j.issn.1673-4254.2017.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the relationship between miR-501-5p expression and the clinicopathological factors in patients with lung adenocarcinoma in Xuanwei area. METHODS Surgical specimens of lung adenocarcinoma and paired adjacent tissues from 24 patients with lung adenocarcinoma from Xuanwei area were examined for miR-501-5p expression using microRNA microarray technique and qPCR. Chi-square test was used to analyze the association of miR-501-5P expression with the clinicopathological characteristics of the patients. Multiple regression analysis was performed to analyze the association of miR-501-5p expression with the patients' gender, age, tumor stage, and preoperative CEA level. RESULTS MicroRNA microarray analysis and qPCR validation results revealed significantly upregulated expressions of miR-501-5p in patients with lung adenocarcinoma from Xuanwei area (Plt;0.01). The microarray data showed an up-regulation of miR-501-5p by 3.17 folds in lung adenocarcinoma tissue compared with the adjacent tissue (P=0.22376, FDR=0.071395). Chi-square test indicated that miR-501-5p expression level was associated with the patients' age (f=7.168, P=0.014), TNM stage (f=36.627, P<0.01), and preoperative serum CEA level (f=30.045, Plt;0.01), but not with the patients' gender (f=3.612, P=0.071). Multiple regression analysis revealed that miR-501-5p expression was positively correlated with the patients' age, TNM stage of the tumor, and serum CEA (Plt;0.05). CONCLUSION miR-501-5p expression is up-regulated in lung adenocarcinoma with significant associations with the patients' age, TNM stages and serum CEA level in patients from Xuanwei area, suggesting its potential role in the tumorigenesis and progression of lung adenocarcinoma in Xuanwei area.
Collapse
Affiliation(s)
- 帅 陈
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 永春 周
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 颖 陈
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 小波 陈
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光剑 李
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 玉洁 雷
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 林玮 田
- 香港大学公 共卫生学院School of Public Health The University of Hong Kong
| | - 光强 赵
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 秋博 黄
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 云超 黄
- 昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan
Key Laboratory of Lung Cancer Research, Kunming 650000, China
| |
Collapse
|
26
|
Shikeeva AA, Kekeeva TV, Zavalishina LE, Andreeva YY, Zaletaev DV, Frank GA. [Expression of microRNA let-7a, miR-155, and miR-205 in tumor and tumor-adjacent histologically normal tissue in patients with non-small cell lung cancer]. Arkh Patol 2017; 78:3-10. [PMID: 27296000 DOI: 10.17116/patol20167833-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED Non-small cell lung cancer (NSCLC) is a main group of lung malignancies. Epigenetic changes are as important as genome structural changes in carcinogenesis. MicroRNA (miRNA) is a class of non-coding single-stranded RNAs that play an important role in the regulation of matrix RNA (mRNA) translation and degradation. MicroRNA expression changes occur in many cancers. According to the field cancerization theory, tumor-adjacent histologically normal tissue takes part in tumor progression by triggering cell transformation. The important clinical implication is that the fields may serve as the basis for a recurrence after surgery. Thus, the aim of our study was to determine the expression levels of miRNAs let-7a, miR-155, and miR-205 in tumor and tumor-adjacent apparently normal tissues to evaluate these changes as potential prognostic markers in NSCLC patients. METHODS The expression of miRNAs let-7a, miR-155, and miR-205 in tumor and tumor-adjacent apparently normal tissues at 2 and 5 cm was determined by real-time PCR with subsequent quantification using a 2-ΔΔСt method. The findings were then analyzed to reveal possible associations with clinical and morphological parameters, such as age, cancer stage, and tumor grade. RESULTS The expression of miRNA let-7a was found to be significantly lower in tumor than that in tumor-adjacent apparently normal tissue at 2 and 5 cm. In groups of patients older than 63 years with Stage III-IV NSCLC, the expressions of microRNA let-7a and miR-155 in tumor tissue were substantially lower than that in the adjacent normal tissue. Beyond that point, patients with high-grade tumors had also a significantly lower expression of miRNA let-7a in relatively adjacent apparently normal tissue. CONCLUSION The findings suggest that miRNA let-7a and miR-155 may be used as poor prognostic markers for patients with NSCLC.
Collapse
Affiliation(s)
- A A Shikeeva
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow; Research Centre for Medical Genetics, Moscow
| | - T V Kekeeva
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow; Research Centre for Medical Genetics, Moscow
| | - L E Zavalishina
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow
| | - Yu Yu Andreeva
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow
| | - D V Zaletaev
- Research Centre for Medical Genetics, Moscow; I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Frank
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, Moscow
| |
Collapse
|
27
|
Patutina OA, Miroshnichenko SK, Lomzov AA, Mironova NL, Zenkova MA. Search for oligonucleotides selectively binding oncogenic miR-21. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s106816201701006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Fan T, Wang W, Zhang B, Xu Y, Chen L, Pan S, Hu H, Geng Q. Regulatory mechanisms of microRNAs in lung cancer stem cells. SPRINGERPLUS 2016; 5:1762. [PMID: 27795904 PMCID: PMC5056920 DOI: 10.1186/s40064-016-3425-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that cancer stem cells (CSCs) are a key occurrence in the process of many human cancers. Lung cancer is the most common aggressive malignancy and cause of cancer death worldwide. The research on lung cancer stem cells has been highlighted for many years. Lung CSCs seem to play a major role in lung cancer metastasis, drug resistance and tumour-self-renewal. MicroRNAs (miRNAs), a class of newly emerging small noncoding RNAs that act as post-transcriptional regulators of gene expression, have been demonstrated to serve as a vital player in fine-tuning a number of biological activities ranging from embryogenesis to programmed cell death as well as tumourigenesis. In recent years, several miRNAs have been highlighted to be specifically expressed in CSCs. The miRNA profile of CSCs is remarkably different from non-stem cancer cells. As such, many miRNAs have been shown to regulate self-renewal and differentiation properties of CSCs. In this review, we present the latest findings on miRNAs that regulate the tumour microenvironment of lung CSCs with the goal to prompt the development of novel therapeutic strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Boyou Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yao Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Lei Chen
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Hao Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
29
|
Tutar Y, Özgür A, Tutar E, Tutar L, Pulliero A, Izzotti A. Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed Pharmacother 2016; 83:1182-1190. [PMID: 27551766 DOI: 10.1016/j.biopha.2016.08.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is one of the most common mortal cancer types both for men and women. Several different biomarkers have been analyzed to reveal lung cancer prognosis pathways for developing efficient therapeutics and diagnostic agents. microRNAs (miRNAs) and pseudogenes are critical biomarkers in lung cancer and alteration of their expression levels has been identified in each step of lung cancer tumorigenesis. miRNAs and pseudogenes are crucial gene regulators in normal cells as well as in lung cancer cells, and they have both oncogenic and tumor-suppressive roles in lung cancer tumorigenesis. In this study, we have determined the relationship between lung cancer related oncogenes and miRNAs along with pseudogenes in lung cancer, and the results indicate their potential as biological markers for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Yusuf Tutar
- Cumhuriyet University, Faculty of Pharmacy, Department of Basic Sciences, Division of Biochemistry, Sivas, Turkey.
| | - Aykut Özgür
- Gaziosmanpaşa University, Faculty of Natural Sciences and Engineering, Department of Bioengineering, Tokat, Turkey
| | - Esen Tutar
- Kahramanmaraş Sütçü İmam University, Graduate School of Natural and Applied Sciences, Department of Bioengineering and Sciences, Kahramanmaraş, Turkey
| | - Lütfi Tutar
- Kahramanmaraş Sütçü İmam University, Faculty of Science and Letters, Department of Biology, Kahramanmaraş, Turkey
| | | | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino-IST, National Institute for Cancer Research, Genoa, Italy
| |
Collapse
|
30
|
MicroRNA in pancreatic adenocarcinoma: predictive/prognostic biomarkers or therapeutic targets? Oncotarget 2016; 6:23323-41. [PMID: 26259238 PMCID: PMC4695121 DOI: 10.18632/oncotarget.4492] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a poor prognosis, short overall survival and few chemotherapeutic choices. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs of around 22 nucleotides involved in the pathogenic mechanisms of carcinogenesis and metastasis. They have been studied in many tumors in order to identify potential diagnostic, prognostic or therapeutic targets. In the current literature, many studies have analyzed the role of miRNAs in PDAC. In fact, the absence of appropriate biomarkers, the difficultly of early detection of this tumor, and the lack of effective chemotherapy in patients with unresectable disease have focused attention on miRNAs as new, interesting advance in this malignancy. In this review we analyzed the role of miRNAs in PDAC in order to understand the mechanisms of action and the difference between the onco-miRNA and the tumor suppressor miRNA. We also reviewed all the data related to the use of these molecules as predictive as well as prognostic biomarkers in the course of the disease. Finally, the possible therapeutic use of miRNAs or anti-miRNAs in PDAC is also discussed. In conclusion, although there is still no clinical application for these molecules in PDAC, it is our opinion that the preclinical evidence of the role of specific miRNAs in carcinogenesis, the possibility of using miRNAs as diagnostic or prognostic biomarkers, and their potential therapeutic role, warrant future studies in PDAC.
Collapse
|
31
|
Lasithiotaki I, Tsitoura E, Koutsopoulos A, Lagoudaki E, Koutoulaki C, Pitsidianakis G, Spandidos DA, Siafakas NM, Sourvinos G, Antoniou KM. Aberrant expression of miR-21, miR-376c and miR-145 and their target host genes in Merkel cell polyomavirus-positive non-small cell lung cancer. Oncotarget 2016; 8:112371-112383. [PMID: 29348831 PMCID: PMC5762516 DOI: 10.18632/oncotarget.11222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Merkel Cell Polyoma Virus (MCPyV) infection has been associated with non-small cell lung cancer (NSCLC). Viruses can manipulate cellular miRNAs or have a profound impact on cellular miRNA expression to control host regulatory pathways. In this study, we evaluated the expression profiles of cancer-associated and virally affected host microRNAs miR-21, miR-145, miR-146a, miR-155, miR-302c, miR-367 and miR-376c in a series of NSCLC tissue samples as well as in samples from “healthy” sites, distant from the tumour region that were either positive or negative for MCPyV DNA. miR-21 and miR-376c were significantly upregulated whereas miR-145 was significantly downregulated in the MCPyV+ve samples compared to the MCPyV-ve tumour samples. Overall, miR-21 and miR-376c expression was higher in tumour compared to healthy tissue samples. No association was observed between the miR-155, miR-146a, miR-302c and miR-367 levels and the presence of MCPyV. The expression of miR-21 target genes (Pten, Bcl-2, Daxx, Pkr, Timp3), miR-376c (Grb2, Alk7, Mmp9) and miR-145 (Oct-4, Sox2, Fascin1) and their associated pathways (Braf, Akt-1, Akt-2, Bax, Hif1a, p53) was altered between MCPyV+ve tumor samples and their corresponding controls. These results show a novel association between miR-21, miR-376c and miR-145 and their host target genes with the presence of MCPyV, suggesting a mechanism of virus-specific microRNA signature in NSCLC.
Collapse
Affiliation(s)
- Ismini Lasithiotaki
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece.,Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Eliza Tsitoura
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece.,Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | | | - Eleni Lagoudaki
- Department of Pathology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Chara Koutoulaki
- Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - George Pitsidianakis
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Nikolaos M Siafakas
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| | - Katerina M Antoniou
- Department of Thoracic Medicine, University Hospital, Medical School, University of Crete, Heraklion 71110, Greece.,Laboratory of Cellular and Molecular Pneumonology, Medical School, University of Crete, Heraklion Crete 71110, Greece
| |
Collapse
|
32
|
Wang X, Zhi X, Zhang Y, An G, Feng G. Role of plasma MicroRNAs in the early diagnosis of non-small-cell lung cancers: a case-control study. J Thorac Dis 2016; 8:1645-52. [PMID: 27499953 DOI: 10.21037/jtd.2016.06.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lung cancer is a leading cause of cancer death worldwide. Early diagnosis is essential for improvements of prognosis and survival of the patients. Altered expressions in many cancer types including lung cancer and stable existence in plasma make microRNAs (miRNAs) a group of potentially useful biomarkers for clinical assessments of patients with lung cancer. In this study, we evaluate the potential values of miRNAs as plasma biomarkers for early diagnosis in non-small-cell lung cancers (NSCLC) by comparing with other typical plasma biomarkers. METHODS We analyzed the clinical and laboratory characteristics of 59 early-staged NSCLC (I-IIIA) patients and non-cancer controls by 1:1 matching age and gender from January 2012 to February 2014 in Xuanwu Hospital, Beijing, China. Peripheral blood samples from patients and controls before surgery were collected, and plasma was separated. Expression of ten miRNAs in the plasma of the patients and controls was detected by quantitative real-time polymerase chain reaction. Other typical markers, such as SCC, CEA, and CYFRA21-1 in plasma were also detected. The early diagnostic ability of miRNAs and other markers were evaluated by receiver-operating-characteristic (ROC) curve analysis. The sensitivity, specificity, and area under the curve were calculated for the cut-off value. RESULTS Plasma CYFRA21-1, miRNA-486 and miRNA-210 levels were significantly different in patients with NSCLC than those in controls (CYFRA21-1: 8.896±7.681 vs. 5.892±6.028, P=0.020; miR-486: 2.778±0.778 vs. 1.746±0.892, P<0.001; miR-210: 4.836±3.374 vs. 2.829±2.503, P<0.001). Area under ROC curve of CYFRA21-1, miR-486 and miR-210 were 0.624 (sensitivity: 0.576, specificity: 0.797), 0.848 (sensitivity: 0.831, specificity: 0.780) and 0.751 (sensitivity: 0.746, specificity: 0.746), respectively. The optimal cut-off value of CYFRA21-1, miRNA-486 and miRNA-210 were 6.595, 1.988 and 3.341, respectively to discriminate patients from controls. Plasma markers combined diagnosis ability had the highest sensitivity: 0.983, but the specificity was low. miR-486, miR-210 and CYFRA21-1 combined diagnosis ability was the highest, and the AUC was 0.924 (sensitivity: 0.847; specificity: 0.728). CONCLUSIONS The results suggest that miRNA-486 and miR-210 could be potential blood-based biomarkers for early diagnosis of NSCLC. miRNAs and other lab indexes may be combined to early diagnose NSCLC, which showed better ability of screening patients.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;; Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guosheng Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
33
|
Abstract
Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer.
Collapse
Affiliation(s)
- David E Midthun
- 1Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Luo W, Lin Y, Meng S, Guo Y, Zhang J, Zhang W. miRNA-296-3p modulates chemosensitivity of lung cancer cells by targeting CX3CR1. Am J Transl Res 2016; 8:1848-1856. [PMID: 27186308 PMCID: PMC4859913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Lung cancer is the most common type of cancer-related death in developed countries. MicroRNAs (miRNAs) are small non-coding RNAs, which regulates gene expression in cancer. Recent studies demonstrate that the microRNA-293-3p (miR-293-3p) may play as an oncogene or a tumor suppressor. However, its expression and roles in non-small cell lung cancer (NSCLC) is not known. In this study, our purpose is to investigate the expression and roles of miR-296-3p in NSCLC. The findings indicated that miR296-3p inhibited NSCLC cell proliferation, enhance the drug resistance, and apoptosis. Data of luciferase reporter assays demonstrated that the CX3CR1 gene was a direct regulator of tumorsuppressive miR296-3p. Moreover, overexpressed CX3CR1 was confirmed in NSCLC clinical specimens. Inhibition of CX3CR1 could inhibit cancer cellular survival and increase chemotherapy sensitivity. There was a negative relationship between miR296-3p and CX3CR1 expression in NSCLC tissues. Our study elucidates that miR296-3p plays a suppressive role in NSCLC by inhibiting CX3CR1 expression.
Collapse
Affiliation(s)
- Wen Luo
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yuanlong Lin
- Department of Infection, Fourth Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Shanshan Meng
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yuening Guo
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Jiawen Zhang
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Wei Zhang
- Department of Respiratory, First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
35
|
Wu H, Liu Y, Shu XO, Cai Q. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion by targeting TGFA gene expression. Carcinogenesis 2016; 37:567-75. [PMID: 27207663 DOI: 10.1093/carcin/bgw038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/27/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of miR-374a has been reported in several types of human cancers, including lung cancer. However, the functional significance and molecular mechanisms underlying the role of miR-374a in lung cancer remain largely unknown. We found that the expression of miR-374a was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal lung tissues in samples included in The Cancer Genome Atlas. Functional studies revealed that overexpression of miR-374a led to inhibition of lung adenocarcinoma cell proliferation, migration and invasion and that miR-374a negatively regulated transforming growth factor-alpha (TGFA) gene expression by directly targeting the 3'-UTR of TGFA mRNA. Treating lung adenocarcinoma cells with TGF-α neutralizing antibody resulted in suppression of cell proliferation and invasion, which mimicked the action of miR-374a. Additionally, TGFA gene expression was significantly higher in tumor tissues compared to adjacent normal tissue and high TGFA gene expression strongly correlated with poor survival in patients with lung adenocarcinoma. Taken together, our studies suggest that miR-374a suppresses lung adenocarcinoma cell proliferation and invasion via targeting TGFA gene expression. Our findings may provide novel treatment strategies for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Haijian Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and Department of Radiation Oncology, Qilu Hospital Affiliated to Shandong University, 107#, Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yan Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| | - Xiao Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA and
| |
Collapse
|
36
|
MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J Clin Med 2016; 5:jcm5030036. [PMID: 27005669 PMCID: PMC4810107 DOI: 10.3390/jcm5030036] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in men and women worldwide. The lack of specific and sensitive tools for early diagnosis as well as still-inadequate targeted therapies contribute to poor outcomes. MicroRNAs are small non-coding RNAs, which regulate gene expression post-transcriptionally by translational repression or degradation of target mRNAs. A growing body of evidence suggests various roles of microRNAs including development and progression of lung cancer. In lung cancer, several studies have showed that certain microRNA profiles classified lung cancer subtypes, and that specific microRNA expression signatures distinguished between better-prognosis and worse-prognosis lung cancers. Furthermore, microRNAs circulate in body fluids, and therefore may serve as promising biomarkers for early diagnosis of lung cancer as well as for predicting prognosis of patients. In the present review, we briefly summarize microRNAs in the development and progression of lung cancer, focusing on possible applications of microRNAs as novel biomarkers and tools for treatment.
Collapse
|
37
|
陈 帅, 周 永, 陈 颖, 陈 小, 李 光, 杨 加, 雷 玉, 赵 光, 黄 秋, 杨 长, 杜 亚, 黄 云. [Specific microRNA expression profiles of lung adenocarcinoma in Xuanwei region and bioinformatic analysis for predicting their target genes and related signaling pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:238-244. [PMID: 28219870 PMCID: PMC6779667 DOI: 10.3969/j.issn.1673-4254.2017.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To identify differentially expressed microRNAs (miRNAs) related to lung adenocarcinoma in Xuanwei region and predict their target genes and related signaling pathways based on bioinformatic analysis. METHODS High-throughput microarray assay was performed to detect miRNA expression profiles in 34 paired human lung adenocarcinoma and adjacent normal tissues (including 24 cases in Xuanwei region and 10 in other regions). Gene ontology and KEGG pathway analyses were used to predict the target genes and the regulatory signaling pathways. RESULTS Thirty-four miRNAs were differentially expressed in lung adenocarcinoma tissues in cases in Xuanwei region as compared with cases in other regions, including 23 upregulated and 11 downregulated miRNAs. The predicted target genes included GF, RTK, SOS, IRS1, BCAP, CYTOKINSR, ECM, ITGB, FAK and Gbeta;Y involving the PI3K/Alt, WNT and MAPK pathways. CONCLUSION The specific microRNA expression profiles of lung adenocarcinoma in cases found in Xuanwei region allow for a better understanding of the pathogenesis of lung adenocarcinoma in Xuanwei. The predicted target genes may involve the PI3K/Alt, WNT and MAPK pathways.
Collapse
Affiliation(s)
- 帅 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 永春 周
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 颖 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 小波 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光剑 李
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 加鹏 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 玉洁 雷
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光强 赵
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 秋博 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 长绍 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 亚茜 杜
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 云超 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| |
Collapse
|
38
|
Zu L, Xue Y, Wang J, Fu Y, Wang X, Xiao G, Hao M, Sun X, Wang Y, Fu G, Wang J. The feedback loop between miR-124 and TGF-β pathway plays a significant role in non-small cell lung cancer metastasis. Carcinogenesis 2016; 37:333-343. [PMID: 26818357 DOI: 10.1093/carcin/bgw011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence shows that micro RNAs (miRNAs) play a critical role in tumor development. However, the role of miRNAs in non-small cell lung cancer (NSCLC) metastasis remains largely unknown. Here, we found that miR-124 expression was significantly impaired in NSCLC tissues and associated with its metastasis. In vitro and in vivo experiments indicate that restoring miR-124 expression in NSCLC cells had a marked effect on reducing cell migration, invasion and metastasis. Mechanistic analyses show that Smad4, a cobinding protein in transforming growth factor-β (TGF-β) pathway, was identified as a new target gene of miR-124. Restoring Smad4 expression in miR-124-infected cells could partially rescue miR-124-induced abolition of cell migration and invasion. Notably, upon TGF-β stimulation, phosphorylation of Smad2/3 was modulated by alteration of miR-124 or Smad4 expression, followed by inducing some special transcription of downstream genes including Snail, Slug and ZEB2, all of which may trigger epithelial-mesenchymal transition and be associated with NSCLC metastasis. Moreover, activation of TGF-β pathway may enhance expression of DNMT3a, leading to hypermethylation on miR-124 promoter. Therefore, heavily loss of miR-124 expression further enhances Smad4 level by this feedback loop. Taken together, our data show for the first time that the feedback loop between miR-124 and TGF-β pathway may play a significant role in NSCLC metastasis. Targeting the loop may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Lidong Zu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunjing Xue
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Jinglong Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Yujie Fu
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China
| | - Xiumin Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Gang Xiao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Mingang Hao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Xueqing Sun
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Yingying Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Guohui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China and.,Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
39
|
Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, Li Y, Yao J, Wang C, Zhang Y, Zhang L. Downregulation of miR-522 suppresses proliferation and metastasis of non-small cell lung cancer cells by directly targeting DENN/MADD domain containing 2D. Sci Rep 2016; 6:19346. [PMID: 26783084 PMCID: PMC4726064 DOI: 10.1038/srep19346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), one of the most common causes of cancer-related death, is a worldwide public health problem. MicroRNAs (miRNAs) have recently been identified as a novel class of regulators of carcinogenesis and tumor progression, including miRNAs associated with NSCLC. This study aimed to explore the role of miR-522 in NSCLC and the mechanisms underlying this role. We report here that miR-522 expression was significantly increased in both human NSCLC tissues and cell lines. Furthermore, an MTT assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay kit and flow cytometry confirmed that the inhibition of miR-522 suppressed NSCLC cells proliferation and induced apoptosis. Compared with miR-522 overexpression, miR-522 inhibitor markedly reduced cells migration and invasion, as indicated by wound-healing and transwell assays. In addition, a luciferase assay identified DENN/MADD domain containing 2D (DENND2D) as a direct target of miR-522. qRT-PCR and western blot analyses indicated the reciprocal expression of miR-522 and DENND2D in NSCLC tissue samples. DENND2D was involved in miR-522 induced proliferation and metastasis of NSCLC cells by a miRNA-masking antisense oligonucleotides (miR-mask) technology. These data highlight a novel molecular interaction between miR-522 and DENND2D, which indicates that targeting miR-522 may constitute a potential therapy for NSCLC.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China.,Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jin Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Liangyu Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianyu Yao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
40
|
The Role of Dysregulated MicroRNA Expression in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 911:1-8. [DOI: 10.1007/5584_2016_219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Ma JY, Yan HJ, Yang ZH, Gu W. Rs895819 within miR-27a might be involved in development of non small cell lung cancer in the Chinese Han population. Asian Pac J Cancer Prev 2015; 16:1939-44. [PMID: 25773791 DOI: 10.7314/apjcp.2015.16.5.1939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNA-27a (miR-27a) is deemed to be an oncogene that plays an important role in development of various cancers, and single nucleotide polymorphism (SNP) of miR-27a can influence the maturation or aberrant expression of hsa-miR27a, resulting in increased risk of cancer and poor prognosis for non-small cell lung cancer (NSCLC). This study aimed to assess the effects of rs895819 within miR-27a on susceptibility and prognosis of NSCLC patients in 560 clinical confirmed cases and 568 healthy check-up individuals. Adjusted odds/hazard ratios (ORs/HRs) and 95% confidential intervals (CIs) were calculated to evaluate the association between rs895819 and the risk and prognosis of NSCLC. The results showed that allele A and genotype GG of rs895819 were significantly associated with an increased risk of NSCLC (38.9% vs 30.8%, adjusted OR=1.26, 95%CI=1.23-1.29 for allele G vs A; 18.1% vs 11.7%, adjusted OR=1.67, 95%CI=1.59-1.75 for genotype GG vs AA). Moreover, positive associations were also observed in dominant and recessive models (53.7% vs 49.9%, adjusted OR=1.17, 95%CI=1.13-1.20 for GG/AG vs AA; 18.1% vs 11.7%, adjusted=1.65, 95%CI=1.58-1.73). However, no significant association was found between rs895819 and the prognosis of NSCLC in genotype, dominant and recessive models. These results suggested that miR-27a might be involved in NSCLC carcinogenesis, but not in progression of NSCLC. The allele G, genotype GG and allele G carrier (GG/AG vs AA) of rs895819 might be genetic susceptible factors for NSCLC. Further multi-central, large sample size and well-designed prospective studies as well as functional studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Ji-Yong Ma
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China E-mail :
| | | | | | | |
Collapse
|
42
|
Yu SL, Lee DC, Sohn HA, Lee SY, Jeon HS, Lee JH, Park CG, Lee HY, Yeom YI, Son JW, Yoon YS, Kang J. Homeobox A9 directly targeted by miR-196b regulates aggressiveness through nuclear Factor-kappa B activity in non-small cell lung cancer cells. Mol Carcinog 2015; 55:1915-1926. [PMID: 26586336 DOI: 10.1002/mc.22439] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are recognized as crucial posttranscriptional regulators of gene expression, and play critical roles as oncogenes or tumor suppressors in various cancers. Here, we show that miR-196b is upregulated in mesenchymal-like-state non-small cell lung cancer (NSCLC) cells and lung cancer tissues. Moreover, miR-196b upregulation stimulates cell invasion and a change in cell morphology to a spindle shape via loss of cell-to-cell contacts. We identified homeobox A9 (HOXA9) as a target gene of miR-196b by using public databases such as TargetScan, miRDB, and microRNA.org. HOXA9 expression is inversely correlated with miR-196b levels in clinical NSCLC samples as compared to that in corresponding control samples, and with the migration and invasion of NSCLC cells. Ectopic expression of HOXA9 resulted in a suppression of miR-196b-induced cell invasion, and HOXA9 reexpression increased E-cadherin expression. Furthermore, HOXA9 potently attenuated the expression of snail family zinc finger 2 (SNAI2/SLUG) and matrix metallopeptidase 9 (MMP9) by controlling the binding of nuclear factor-kappa B to the promoter of SLUG and MMP9 genes, respectively. Therefore, we suggest that HOXA9 plays a central role in controlling the aggressive behavior of lung cancer cells and that miR-196b can serve as a potential target for developing anticancer agents. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Dong Chul Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun Ahm Sohn
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Soo Young Lee
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Hyo Sung Jeon
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joon H Lee
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Young Il Yeom
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Yoo Sang Yoon
- Department of Thoracic Surgery, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeku Kang
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
43
|
Naidu S, Garofalo M. microRNAs: An Emerging Paradigm in Lung Cancer Chemoresistance. Front Med (Lausanne) 2015; 2:77. [PMID: 26583081 PMCID: PMC4631988 DOI: 10.3389/fmed.2015.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is considered the most deadly of all cancers, with limited therapeutic options. Although advanced drugs have been tried in clinic, the therapeutic success has largely been hampered due to rapid development of drug-resistance mechanisms. Recently, microRNAs (miRNAs), a class of small non-coding RNAs, have occupied center stage in cancer biology. miRNAs negatively regulate gene expression either by promoting degradation or by interfering with translation of messenger RNA targets. Several lines of evidence have confirmed the crucial role of miRNAs in carcinogenesis, and, importantly, in the acquisition of resistance to chemotherapeutics. Modulation of miRNA expression levels has been proven to increase the efficacy of genotoxic drugs in various preclinical cancer studies. Therefore, comprehensive understanding of the role(s) of these key players in drug resistance may provide novel opportunities to design effective combinatorial therapeutic strategies for cancer treatment. In this review, we highlight recent findings on miRNAs acting as oncomiRs and tumor suppressor genes in lung cancer. Moreover, we discuss the involvement of miRNAs in different mechanisms of drug resistance in this deadly disease.
Collapse
Affiliation(s)
- Srivatsava Naidu
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Xing Y, Fu J, Yang H, Yao L, Qiao L, Du Y, Xue X. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia. Int J Mol Med 2015; 36:1253-63. [PMID: 26398774 PMCID: PMC4601749 DOI: 10.3892/ijmm.2015.2347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the mechanisms through which microRNAs (miRNAs or miRs) regulate lung development after birth, as well as the role of miRNAs in the development of bronchopulmonary dysplasia (BPD). For this purpose, a total of 90 neonatal Wistar rats were randomly and equally assigned to either a model group or a control group. On postnatal days 3, 7 and 14, the lung tissues were collected for histological analysis to determine morphological changes. The expression levels of proliferating cell nuclear antigen (PCNA) and platelet endothelial cell adhesion molecule-1 (PECAM-1, also known as CD31) were measured by RT-qPCR and western blot analysis. A miRCURY™ LNA array was employed to screen for differentially expressed miRNAs, and the possible target genes of those miRNAs were predicted. Our results revealed that, compared with the control group, the following changes induced by hyperoxia were observed in the model group over time: a decrease in the number, but an increase in the size of the alveoli, and a decrease in the number of secondary septa formed. In the model group, from postnatal days 3–14, the mRNA and protein expression levels of PCNA and CD31 were significantly lower than those in the control group. The differentially expressed miRNAs between the 2 groups were identified on days 3, 7 and 14 after birth. Possible target genes were identified for 32 differentially expressed miRNAs. Taken together, these findings suggest that during the development of BPD, an alveolarization disorder with microvascular dysplasia co-exists with the differential expression of certain miRNAs during the different stages of alveolar development in a neonatal rat model of hyperoxia-induced BPD. This indicates that miRNAs may participate in the occurrence and development of BPD.
Collapse
Affiliation(s)
- Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanna Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
45
|
Zhang R, Zhang Y, Li H. miR-1244/Myocyte Enhancer Factor 2D Regulatory Loop Contributes to the Growth of Lung Carcinoma. DNA Cell Biol 2015; 34:692-700. [PMID: 26355845 DOI: 10.1089/dna.2015.2915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lung carcinoma greatly threatens human health, due to its increasing incidence in recent years and poor prognosis. However, this malignancy displays resistance against current therapeutic strategies. One of major causes leading to bad outcomes for lung cancer therapy is the lack of understanding on its tumorigenesis and progression. To explore the molecular mechanism by which lung cancer progresses, we employed multidisciplinary approaches and used lung cancer cell lines as research models. miR-1244 was underexpressed in lung carcinoma by 40.6-73.8%, which is highly associated with patients' survival. miR-1244 restoration was shown to affect the proliferation, survival, and invasion of lung cancer cells. miR-1244 suppression rendered normal lung fibroblasts with malignant phenotypes. miR-1244 overexpression can reduce the growth of lung cancer xenografts. miR-1244 was then verified to negatively regulate the expression of myocyte enhancer factor 2D (MEF2D) in lung cancer cells. MEF2D can also affect the expression of miR-1244 by directly binding to its promoter. Further study showed that MEF2D is required for the effect of miR-1244 on lung cancer and normal cells. These results suggested that there is an autoregulatory circuit consisting of miR-1244 and MEF2D, which contributes to the progression of lung cancer. Targeting this molecular loop may be a promising strategy for lung carcinoma treatment.
Collapse
Affiliation(s)
- Rui Zhang
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yong Zhang
- 2 Department of Respiratory Medicine, The Affiliated Hospital of Panzhihua University , Panzhihua, China
| | - He Li
- 3 Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
46
|
Bozok Çetintaş V, Tetik Vardarlı A, Düzgün Z, Tezcanlı Kaymaz B, Açıkgöz E, Aktuğ H, Kosova Can B, Gündüz C, Eroğlu Z. miR-15a enhances the anticancer effects of cisplatin in the resistant non-small cell lung cancer cells. Tumour Biol 2015; 37:1739-51. [PMID: 26314859 DOI: 10.1007/s13277-015-3950-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/18/2015] [Indexed: 01/09/2023] Open
Abstract
Platinum-based chemotherapies have long been used as a standard treatment in non-small cell lung cancer. However, cisplatin resistance is a major problem that restricts the use of cisplatin. Deregulated cell death mechanisms including apoptosis and autophagy could be responsible for the development of cisplatin resistance and miRNAs are the key regulators of these mechanisms. We aimed to analyse the effects of selected miRNAs in the development of cisplatin resistance and found that hsa-miR-15a-3p was one of the most significantly downregulated miRNAs conferring resistance to cisplatin in Calu1 epidermoid lung carcinoma cells. Only hsa-miR-15a-3p mimic transfection did not affect cell proliferation or cell death, though decreased cell viability was found when combined with cisplatin. We found that induced expression of hsa-miR-15a-3p via mimic transfection sensitised cisplatin-resistant cells to apoptosis and autophagy. Our results demonstrated that the apoptosis- and autophagy-inducing effects of hsa-miR-15a-3p might be due to suppression of BCL2, which exhibits a major connection with cell death mechanisms. This study provides new insights into the mechanism of cisplatin resistance due to silencing of the tumour suppressor hsa-miR-15a-3p and its possible contribution to apoptosis, autophagy and cisplatin resistance, which are the devil's triangle in determining cancer cell fate.
Collapse
Affiliation(s)
| | - Aslı Tetik Vardarlı
- Department of Medical Biology, Ege University School of Medicine, Izmir, Turkey
| | - Zekeriya Düzgün
- Department of Medical Biology, Ege University School of Medicine, Izmir, Turkey
| | | | - Eda Açıkgöz
- Department of Embryology and Histology, Ege University School of Medicine, Izmir, Turkey
| | - Hüseyin Aktuğ
- Department of Embryology and Histology, Ege University School of Medicine, Izmir, Turkey
| | - Buket Kosova Can
- Department of Medical Biology, Ege University School of Medicine, Izmir, Turkey
| | - Cumhur Gündüz
- Department of Medical Biology, Ege University School of Medicine, Izmir, Turkey
| | - Zuhal Eroğlu
- Department of Medical Biology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
47
|
Li Y, Sun Y, Ren F, Li Y, Liu M, Liu H, Chen J. [Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:260-5. [PMID: 25975295 PMCID: PMC6015212 DOI: 10.3779/j.issn.1009-3419.2015.05.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
背景与目的 已有的研究证明MiR-182的异常调控与恶性肿瘤的发生发展密切相关,本研究旨在探讨肺癌细胞中miR-182启动子的甲基化状态对miR-182表达的影响。 方法 荧光定量PCR检测肺癌细胞中miR-182表达水平,甲基化特异性PCR检测各细胞株中miR-182启动子区的甲基化状态,并通过测序进行验证。DNA甲基转移酶抑制剂5’-Aza-dC处理后检测各肺癌细胞株中miR-182表达变化。 结果 MiR-182在不同肺癌细胞株的表达水平不同,其中,在高转移性肺癌细胞株如A549和L9981中相对呈低表达;而在低转移性细胞株95C则相对呈高表达。MSP及测序分析显示多株肺癌细胞株中miR-182启动子区域存在DNA甲基化,其中A549细胞甲基化程度最高。在5'-氮杂-脱氧胞苷酸(5’-Aza-dC)作用下,A549细胞及其他肺癌细胞中miR-182表达水平均明显升高。 结论 在肺癌细胞中miR-182启动子区域存在异常甲基化,miR-182的表达受DNA甲基化的调控。MiR-182的甲基化在肺癌中的作用尚需进一步研究。
Collapse
Affiliation(s)
- Yongwen Li
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Yonglin Sun
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Ying Li
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital,
Tianjin 300052, China
| | - Jun Chen
- Tianjin Lung Cancer Institute;Department of Lung Cancer Surgery, Tianjin Medical University General Hospital,
Tianjin 300052, China
| |
Collapse
|
48
|
Zhang G, An H, Fang X. MicroRNA-144 regulates proliferation, invasion, and apoptosis of cells in malignant solitary pulmonary nodule via zinc finger E-box-binding homeobox 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5960-7. [PMID: 26191328 PMCID: PMC4503199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
AIMS This study was to investigate the expression of microRNA (miR)-144 in malignant solitary pulmonary nodule (SPN) tissues and peripheral blood, as well as the biological function of miR-144 in the occurrence and development of lung cancer. METHODS In this study, 39 malignant and 30 benign SPN patients were included. The expression of miR-144 was examined using quantitative real-time polymerase chain reaction. Receiver operating characteristic (ROC) curve was used to identify the clinical value of miR-144 in the early diagnosis of malignant SPN. MTT assay was performed to determine A549 cell proliferation and Transwell assay was used to detect changes in A549 cell invasion and migration ability. Flow cytometry was performed to monitor cell apoptosis, while Western blotting assay was used to measure protein expression levels. At last, dual-luciferase reporter assay was employed to test whether miR-144 regulates zinc finger E-box-binding homeobox 1 (ZEB1) gene expression. RESULTS Expression of miR-144 was reduced in patients with malignant SPN. miR-144 had diagnostic value for malignant SPN. Proliferation of A549 cells was inhibited by miR-144. Invasion ability of A549 cells was reduced by miR-144. Apoptosis of A549 cells was promoted by miR-144. miR-144 induced A549 cell apoptosis by targeting ZEB1 protein. miR-144 regulated the expression of ZEB1 by interacting with its 3'-UTR region. CONCLUSIONS Expression of miR-144 is reduced in malignant SPN tissues and peripheral blood, being of clinical value in the diagnosis of malignant SPN. miR-144 promotes the apoptosis of lung cancer cells, and inhibits the proliferation, invasion and migration of lung cancer by regulating ZEB1 gene.
Collapse
Affiliation(s)
- Guizhi Zhang
- Department of Respiratory Medicine, General Hospital of Chinese People’s Liberation ArmyBeijing 100853, P. R. China
| | - Huaijie An
- Center of Basic Medical Sciences, Navy General Hospital of People’s Liberation ArmyBeijing 100048, P. R. China
| | - Xiangqun Fang
- Department of Respiratory Medicine, General Hospital of Chinese People’s Liberation ArmyBeijing 100853, P. R. China
| |
Collapse
|
49
|
MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer. Cancer Lett 2015; 362:208-17. [PMID: 25843294 DOI: 10.1016/j.canlet.2015.03.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules that are dysregulated in many types of human cancers, although their precise functions in driving non-small cell lung cancer (NSCLC) are incompletely understood. In the present study, we found that miR-30d-5p, often downregulated in NSCLC tissues, significantly inhibited the growth, cell cycle distribution, and motility of NSCLC cells. Furthermore, we demonstrated that cyclin E2 (CCNE2), which was often upregulated in NSCLC tissues, was a direct target of miR-30d-5p. CCNE2 expression promoted the proliferation, invasion, and migration of NSCLC cells. In addition, the re-introduction of CCNE2 expression antagonised the inhibitory effects of miR-30d-5p on the capacity of NSCLC cells for proliferation and motility. Together, these results suggest that the miR-30d-5p/CCNE2 axis may contribute to NSCLC cell proliferation and motility, indicating miR-30d-5p as a potential therapeutic target for the treatment of NSCLC.
Collapse
|
50
|
Yan HJ, Ma JY, Wang L, Gu W. Expression and significance of circulating microRNA-31 in lung cancer patients. Med Sci Monit 2015; 21:722-6. [PMID: 25765717 PMCID: PMC4362487 DOI: 10.12659/msm.893213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to investigate the expression level of circulating microRNA-31(miRNA-31) in lung cancer patients and its clinical significance. Material/Methods Real-time fluorescent quantitative PCR was utilized to detect the circulating miRNA-31 expression levels in 300 lung cancer patients and 300 health control subjects. The ROC curve was drawn to evaluate the diagnostic value of the circulating miRNA-31 expression levels in lung cancer. The 300 lung cancer patients were divided into a miRNA-31 low-expression group and a miRNA-31 high-expression group. A survival curve was drawn according to the Kaplan-Meier method to evaluate the prognostic value of the circulating microRNA-31 expression levels for lung cancer. Results The circulating miRNA-31 expression levels in the lung cancer patients (l.88±0. 67) increased significantly (P<0.001) compared to the healthy controls (0.58±0. 44). The area under the ROC curve drawn according to the circulating miRNA-31 expression levels was 0.785 (95% CI=0.486–0.763). When the critical value was 1.27, the sensitivity and specificity for lung cancer diagnosis according to the circulating miRNA-31 expression levels were 0.769 and 0.745, respectively. The difference in the survival curve between the miRNA-31 low-expression group (123 cases) and high-expression group (177 cases) was statistically significant (P=0.004). Median survival period of the low-expression group (38.44 months) was longer than that of the high-expression group (25.23 months). Conclusions miRNA-31 may be a molecular marker for the diagnostic and prognostic evaluation of primary lung cancer.
Collapse
Affiliation(s)
- Hai-Jun Yan
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ji-Yong Ma
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Li Wang
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|