1
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Chen ZK, Liu YY, Zhou JC, Chen GH, Liu CF, Qu WM, Huang ZL. Insomnia-related rodent models in drug discovery. Acta Pharmacol Sin 2024; 45:1777-1792. [PMID: 38671193 PMCID: PMC11335876 DOI: 10.1038/s41401-024-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Chuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Wu Y, Zhou S, Li Y, Huang P, Zhong Z, Dong H, Tian H, Jiang S, Xie J, Li P. Remote ischemic preconditioning improves spatial memory and sleep of young males during acute high-altitude exposure. Travel Med Infect Dis 2023; 53:102576. [PMID: 37068619 DOI: 10.1016/j.tmaid.2023.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE The high-altitude hypoxia environment will cause poor acclimatization in a portion of the population. Remote ischemic preconditioning(RIPC)has been demonstrated to prevent cardiovascular and cerebrovascular diseases under ischemic or hypoxic conditions. However, its role in improving acclimatization and preventing acute mountain sickness (AMS) at high altitude has been undetermined. This study aims to estimate the effect of RIPC on acclimatization of individuals exposed to high altitude. METHODS The project was designed as a randomized controlled trial with 82 healthy young males, who received RIPC training once a day for 7 consecutive days. Then they were transported by aircraft to a high altitude (3680 m) and examined for 6 days. Lake Louise Score(LLS) of AMS, physiological index, self-reported sleep pattern, and Pittsburgh Sleep Quality Index(PSQI)score were applied to assess the acclimatization to the high altitude. Five neurobehavioral tests were conducted to assess cognitive function. RESULTS The result showed that the RIPC group had a significantly lower AMSscore than the control group (2.43 ± 1.58 vs 3.29 ± 2.03, respectively; adjusted mean difference-0.84, 95% confidence interval-1.61 to -0.06, P = 0.036). and there was no significant difference in AMS incidence between the two groups (25.0% vs 28.57%, P = 0.555). The RIPC group performed better than the control group in spatial memory span score (11[9-12] vs 10[7.5-11], P=0.025) and the passing digit (7[6-7.5] vs 6[5-7], P= 0.001). Spatial memory was significantly higher in the high-altitude RIPC group than in the low-altitude RIPC group (P<0.01). And the RIPC group obtained significantly lower self-reported sleep quality score (P = 0.024) and PSQI score (P = 0.031). CONCLUSIONS The RIPC treatment improved spatial memory and sleep quality in subjects exposed to acute hypoxic exposure and this may lead to improved performance at high altitude.
Collapse
Affiliation(s)
- Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Shuai Jiang
- Department of Health, The 12th Integrated Training Base of Army, Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Ji Q, Wang X, Zhao W, Wills M, Yun HJ, Tong Y, Cai L, Geng X, Ding Y. Effects of remote ischemic conditioning on sleep complaints in Parkinson's disease–rationale, design, and protocol for a randomized controlled study. Front Neurol 2022; 13:932199. [PMID: 35959392 PMCID: PMC9359623 DOI: 10.3389/fneur.2022.932199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Sleep disturbances are common non-motor symptoms of Parkinson's disease. The symptoms affect the quality of patients' life by impeding normal sleep cycles and causing excessive daytime sleepiness. Remote Ischemic Conditioning (RIC) is a therapy often used for ischemic stroke patients to minimize infarct size and maximize post-stroke neurological function. Animal experiments have shown that RIC plays a protective role for retinal ganglion cells and other critical areas of the brain of Parkinson's disease. However, whether RIC improves excessive daytime sleepiness (EDS) for patients with Parkinson's disease remains to be determined. Methods This is a single-center, double-blind, and randomized controlled trial, which includes patients with Parkinson's disease with EDS. All recruited patients will be randomly assigned either to the RIC or the control group (i.e., sham-RIC) with 20 patients in each group. Both groups receive RIC or sham-RIC treatment once a day for 28 days within 24 h of enrollment. Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Parkinson Disease Sleep Scale-2 (PDSS-2), Parkinson's Disease Questionnaire39 (PDQ39) score scales, and adverse events, such as inability to tolerate the treatment leading to suspension of the study or objective signs of tissue or neurovascular injury caused by RIC and/or sham-RIC are evaluated at 7, 14, 28, and 90 days after enrollment. Results The primary goal of this study is to assess the feasibility of the treatments in patients with Parkinson's disease by measuring serious RIC-related adverse events and any reduced incidence of adverse events during the trial and to study potential efficacy, improvement of patients' excessive daytime sleepiness, quality of life-based on ESS, PSQI, PDSS-2, and PDQ39 scores. The secondary goal is to confirm the safety of the treatments. Conclusion This study is a prospective randomized controlled trial to determine the safety, feasibility, and potential efficacy of RIC for patients with Parkinson's disease associated with EDS.
Collapse
Affiliation(s)
- Qiling Ji
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Yuchuan Ding
| |
Collapse
|
6
|
Wang X, Ji X. Interactions between remote ischemic conditioning and post-stroke sleep regulation. Front Med 2021; 15:867-876. [PMID: 34811643 DOI: 10.1007/s11684-021-0887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022]
Abstract
Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
Collapse
Affiliation(s)
- Xian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100069, China.
| |
Collapse
|
7
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
8
|
Edalatyzadeh Z, Aghajani M, Imani A, Faghihi M, Sadeghniiat-Haghighi K, Askari S, Choopani S. Cardioprotective effects of acute sleep deprivation on ischemia/reperfusion injury. Auton Neurosci 2020; 230:102761. [PMID: 33310629 DOI: 10.1016/j.autneu.2020.102761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/08/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Modulation of sympathetic activity during acute sleep deprivation can produce various effects on body functions. We studied the effects of acute sleep deprivation before ischemia/reperfusion on myocardial injury in isolated rat hearts, and the role of sympathetic nervous system that may mediate these sleep deprivation induced effects. METHODS The animals were randomized into four groups (n = 11 per group): Ischemia- Reperfusion group (IR), Acute sleep deprivation group (SD), Control group for sleep deprivation (CON-SD) and Sympathectomy + ASD group (SYM-SD). In SD group, sleep deprivation paradigm was used 24 h prior to induction of ischemia/reperfusion. In SYM-SD group, the animals were chemically sympathectomized using 6-hydroxydopamine, 24 h before sleep deprivation. Then, the hearts of animals were perfused using Langendorff setup and were subjected to 30 min regional ischemia followed by 60 min of reperfusion. Throughout the experiment, the hearts were allowed to beat spontaneously and left ventricular developed pressure (LVDP) and rate pressure product (RPP) were recorded. At the end of study, infarct size and percentage of the area at risk were determined. RESULTS We found that SD increased LVDP and RPP, while reducing the myocardial infarct size. Moreover, sympathectomy reversed SD induced reduction in infarct size and showed no differences as compared to IR. CONCLUSION This study shows cardioprotective effects of acute sleep deprivation, which can be abolished by chemical sympathectomy in isolated hearts of rats.
Collapse
Affiliation(s)
- Zohreh Edalatyzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Aghajani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdieh Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Choopani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wake-up stroke: From pathophysiology to management. Sleep Med Rev 2019; 48:101212. [PMID: 31600679 DOI: 10.1016/j.smrv.2019.101212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Wake-up strokes (WUS) are strokes with unknown exact time of onset as they are noted on awakening by the patients. They represent 20% of all ischemic strokes. The chronobiological pattern of ischemic stroke onset, with higher frequency in the first morning hours, is likely to be associated with circadian fluctuations in blood pressure, heart rate, hemostatic processes, and the occurrence of atrial fibrillation episodes. The modulation of stroke onset time also involves the sleep-wake cycle as there is an increased risk associated with rapid-eye-movement sleep. Furthermore, sleep may have an impact on the expression and perception of stroke symptoms by patients, but also on brain tissue ischemia processes via a neuroprotective effect. Obstructive sleep apnea syndrome is particularly prevalent in WUS patients. Until recently, WUS was considered as a contra-indication to reperfusion therapy because of the unknown onset time and the potential cerebral bleeding risk associated with thrombolytic treatment. A renewed interest in WUS has been observed over the past few years related to an improved radiological evaluation of WUS patients and the recent demonstration of the clinical efficacy of reperfusion in selected patients when the presence of salvageable brain tissue on advanced cerebral imaging is demonstrated.
Collapse
|
10
|
Christensen E, Abosch A, Thompson JA, Zylberberg J. Inferring sleep stage from local field potentials recorded in the subthalamic nucleus of Parkinson's patients. J Sleep Res 2018; 28:e12806. [DOI: 10.1111/jsr.12806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elijah Christensen
- Department of Physiology and Biophysics; University of Colorado School of Medicine; Aurora Colorado
- Medical Scientist Training Program; University of Colorado School of Medicine; Aurora Colorado
| | - Aviva Abosch
- Department of Neurosurgery; University of Colorado School of Medicine; Aurora Colorado
| | - John A. Thompson
- Department of Neurosurgery; University of Colorado School of Medicine; Aurora Colorado
| | - Joel Zylberberg
- Department of Physiology and Biophysics; University of Colorado School of Medicine; Aurora Colorado
- Computational Biosciences Program; University of Colorado School of Medicine; Aurora Colorado
| |
Collapse
|
11
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
12
|
Chen G, Thakkar M, Robinson C, Doré S. Limb Remote Ischemic Conditioning: Mechanisms, Anesthetics, and the Potential for Expanding Therapeutic Options. Front Neurol 2018; 9:40. [PMID: 29467715 PMCID: PMC5808199 DOI: 10.3389/fneur.2018.00040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
Novel and innovative approaches are essential in developing new treatments and improving clinical outcomes in patients with ischemic stroke. Remote ischemic conditioning (RIC) is a series of mechanical interruptions in blood flow of a distal organ, following end organ reperfusion, shown to significantly reduce infarct size through inhibition of oxidation and inflammation. Ischemia/reperfusion (I/R) is what ultimately leads to the irreversible brain damage and clinical picture seen in stroke patients. There have been several reports and reviews about the potential of RIC in acute ischemic stroke; however, the focus here is a comprehensive look at the differences in the three types of RIC (remote pre-, per-, and postconditioning). There are some limited uses of preconditioning in acute ischemic stroke due to the unpredictability of the ischemic event; however, it does provide the identification of biomarkers for clinical studies. Remote limb per- and postconditioning offer a more promising treatment during patient care as they can be harnessed during or after the initial ischemic insult. Though further research is needed, it is imperative to discuss the importance of preclinical data in understanding the methods and mechanisms involved in RIC. This understanding will facilitate translation to a clinically feasible paradigm for use in the hospital setting.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mrugesh Thakkar
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Christopher Robinson
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, University of Florida, Gainesville, FL, United States.,Department of Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Pincherle A, Pace M, Sarasso S, Facchin L, Dreier JP, Bassetti CL. Sleep, Preconditioning and Stroke. Stroke 2017; 48:3400-3407. [DOI: 10.1161/strokeaha.117.018796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Pincherle
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Marta Pace
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Simone Sarasso
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Laura Facchin
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Jens P. Dreier
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Claudio L. Bassetti
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| |
Collapse
|