1
|
Dhawan S, Musa AH, Mantripragada K. Novel Mitochondrial Cytopathy Causing Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes Syndrome and Tubulointerstitial Nephropathy. Cureus 2024; 16:e66722. [PMID: 39262552 PMCID: PMC11390156 DOI: 10.7759/cureus.66722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial cytopathies, predominantly MT-TL1 mutations and, to a lesser extent, MT-ND5, have been associated with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), manifesting as multi-organ dysfunction. This is just the second instance of MELAS secondary to the pathogenic novel m.13091T>C variant of MT-ND5. Moreover, nephropathy associated with MT-ND5 mutation has only been reported in nine cases so far. A middle-aged man presented in a state of acute confusion with speech difficulty with both receptive and expressive aphasia. He had a background of refractory seizures, chronic atypical migraine, childhood-onset optic neuropathy, and end-stage renal disease requiring renal transplant. During admission, he had episodes of aggression and paranoid beliefs. Magnetic resonance (MR) imaging of the head showed multiple areas of cortical abnormality, unusual for age, including a large frontal infarct crossing arterial boundaries. Cerebrospinal fluid (CSF) protein and lactate were high, whereas, the electroencephalography (EEG) result was normal. Muscle biopsy mitochondrial DNA gene sequencing derived novel MT-ND5 gene variant m.13091T>C p.(Met252Thr). Kidney biopsy previously had shown interstitial fibrosis and tubular atrophy. He was managed as acute ischaemic stroke along with a combination of clobazam, levetiracetam, and eslicarbazepine for seizures. MELAS typically presents with seizures, stroke-like episodes, cortical visual loss, and recurrent migraine headaches. The previous reported case of m.13091T>C mutation followed a similar progression, however, there was no associated nephropathy and normal visual acuity. Kidney transplants in affected patients of MELAS have been associated with a high survival rate. MT-ND5 mutation-associated nephropathy has shown a variable manifestation, either as focal segmental glomerular sclerosis (FSGS) or tubulo-interstitial disease.
Collapse
Affiliation(s)
- Saurav Dhawan
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | - Abdel H Musa
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | | |
Collapse
|
2
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|
3
|
Barone V, La Morgia C, Caporali L, Fiorini C, Carbonelli M, Gramegna LL, Bartiromo F, Tonon C, Morandi L, Liguori R, Petrini A, Brugnano R, Del Sordo R, Covarelli C, Morroni M, Lodi R, Carelli V. Case Report: Optic Atrophy and Nephropathy With m.13513G>A/MT-ND5 mtDNA Pathogenic Variant. Front Genet 2022; 13:887696. [PMID: 35719398 PMCID: PMC9204033 DOI: 10.3389/fgene.2022.887696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Isolated complex I deficiency represents the most common mitochondrial respiratory chain defect involved in mitochondrial disorders. Among these, the mitochondrial DNA (mtDNA) m.13513G>A pathogenic variant in the NADH dehydrogenase 5 subunit gene (MT-ND5) has been associated with heterogenous manifestations, including phenotypic overlaps of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, Leigh syndrome, and Leber’s hereditary optic neuropathy (LHON). Interestingly, this specific mutation has been recently described in patients with adult-onset nephropathy. We, here, report the unique combination of LHON, nephropathy, sensorineural deafness, and subcortical and cerebellar atrophy in association with the m.13513G>A variant.
Collapse
Affiliation(s)
- Valentina Barone
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michele Carbonelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Aurelia Petrini
- Nephrology Division, “S. Giovanni Battista Nuovo” Hospital, Foligno, Italy
| | - Rachele Brugnano
- Department of Nephrology and Dialysis, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Rachele Del Sordo
- Department of Medicine and Surgery, Section of Anatomic Pathology and Hystology, Medical School, University of Perugia, Perugia, Italy
| | - Carla Covarelli
- Department of Medicine and Surgery, Section of Anatomic Pathology and Hystology, Medical School, University of Perugia, Perugia, Italy
| | - Manrico Morroni
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Valerio Carelli,
| |
Collapse
|
4
|
Dawod PGA, Jancic J, Marjanovic A, Brankovic M, Jankovic M, Samardzic J, Gamil Anwar Dawod A, Novakovic I, Abdel Motaleb FI, Radlovic V, Kostic VS, Nikolic D. Mutational Analysis and mtDNA Haplogroup Characterization in Three Serbian Cases of Mitochondrial Encephalomyopathies and Literature Review. Diagnostics (Basel) 2021; 11:1969. [PMID: 34829316 PMCID: PMC8620769 DOI: 10.3390/diagnostics11111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial encephalomyopathies (MEMP) are heterogeneous multisystem disorders frequently associated with mitochondrial DNA (mtDNA) mutations. Clinical presentation varies considerably in age of onset, course, and severity up to death in early childhood. In this study, we performed molecular genetic analysis for mtDNA pathogenic mutation detection in Serbian children, preliminary diagnosed clinically, biochemically and by brain imaging for mitochondrial encephalomyopathies disorders. Sanger sequencing analysis in three Serbian probands revealed two known pathogenic mutations. Two probands had a heteroplasmic point mutation m.3243A>G in the MT-TL1 gene, which confirmed mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome (MELAS), while a single case clinically manifested for Leigh syndrome had an almost homoplasmic (close to 100%) m.8993T>G mutation in the MT-ATP6 gene. After full mtDNA MITOMASTER analysis and PhyloTree build 17, we report MELAS' association with haplogroups U and H (U2e and H15 subclades); likewise, the mtDNA-associated Leigh syndrome proband shows a preference for haplogroup H (H34 subclade). Based on clinical-genetic correlation, we suggest that haplogroup H may contribute to the mitochondrial encephalomyopathies' phenotypic variability of the patients in our study. We conclude that genetic studies for the distinctive mitochondrial encephalomyopathies should be well-considered for realizing clinical severity and possible outcomes.
Collapse
Affiliation(s)
- Phepy G. A. Dawod
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Jasna Jancic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Clinic of Neurology and Psychiatry of Children and Youth, 11000 Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Marija Brankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ayman Gamil Anwar Dawod
- Internal Medicine, Hepatogastroenterology and Endoscopy Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Fayda I. Abdel Motaleb
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Vladimir Radlovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Pediatric Surgery Department, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, Tirsova 10, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Ito H, Fukutake S, Odake S, Okeda R, Tokunaga O, Kamei T. A MELAS Patient Developing Fatal Acute Renal Failure with Lactic Acidosis and Rhabdomyolysis. Intern Med 2020; 59:2773-2776. [PMID: 32641653 PMCID: PMC7691035 DOI: 10.2169/internalmedicine.4922-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We herein present a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), who developed serious acute renal failure with lactic acidosis, followed by rhabdomyolysis. Despite receiving intensive care, he suffered multiple cardiopulmonary arrests and died 10 days after presentation due to a sudden deterioration of his symptoms. Renal pathology revealed diffuse tubular necrosis with interstitial edema and tubular dilatation on light microscopy, and a severe degeneration of intracellular organelles on electron microscopy. These pathological findings could have resulted from multiple cardiopulmonary arrests; however, we must be aware of the extremely rare but sudden occurrence of these fatal conditions in MELAS patients.
Collapse
Affiliation(s)
- Hisashi Ito
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Shigeru Fukutake
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Sanae Odake
- Department of Internal Medicine, Sodegaura Satsuki-dai Hospital, Japan
| | - Riki Okeda
- Department of Pathology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Osamu Tokunaga
- Department of Pathology, Shonan Fujisawa Tokushukai Hospital, Japan
| | - Tetsumasa Kamei
- Department of Neurology, Shonan Fujisawa Tokushukai Hospital, Japan
| |
Collapse
|
6
|
Bakis H, Trimouille A, Vermorel A, Redonnet I, Goizet C, Boulestreau R, Lacombe D, Combe C, Martin-Négrier ML, Rigothier C. Adult onset tubulo-interstitial nephropathy in MT-ND5-related phenotypes. Clin Genet 2020; 97:628-633. [PMID: 31713837 DOI: 10.1111/cge.13670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022]
Abstract
Kidney is a highly adenosine triphosphate dependent organ in human body. Healthy and functional mitochondria are essential for normal kidney function. Clinical and genetic variability are the hallmarks of mitochondrial disorders. We report here the involvement of two MT-ND5 pathogenic variants encoding for ND5 subunit of respiratory chain complex I, the m.13513G>A and the m.13514A>G, in adult-onset kidney disease in three unrelated patients. The first patient had myopathy encephalopathy lactic acidosis and stroke syndrome, left ventricular hypertrophy with Wolff-Parkinson-White syndrome and tubulo-interstitial kidney disease. The second presented Leber hereditary optic neuropathy associated with tubulo-interstitial kidney disease. The third presented with an isolated chronic tubulo-interstitial kidney disease. These mutations have never been associated with adulthood mitochondrial nephropathy. These case reports highlight the importance to consider mitochondrial dysfunction in tubulo-interstitial kidney disease.
Collapse
Affiliation(s)
- Hugo Bakis
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Aurélien Trimouille
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Agathe Vermorel
- Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Isabelle Redonnet
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Romain Boulestreau
- Service de Cardiologie et d'Hypertension Artérielle, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- Service de Génétique médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,lNSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| | - Marie-Laure Martin-Négrier
- Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Centre de référence pour les maladies mitochondriales de l'enfant à l'adulte (CARAMMEL), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,UMR5293, Université de Bordeaux, Bordeaux, France
| | - Claire Rigothier
- Service de Néphrologie Transplantation Dialyse et Aphérèses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| |
Collapse
|
7
|
Chen BS, Biousse V, Newman NJ. Mitochondrial DNA 13513G>A mutation presenting with Leber's hereditary optic neuropathy. Clin Exp Ophthalmol 2019; 47:1202-1204. [PMID: 31368143 DOI: 10.1111/ceo.13603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Benson S Chen
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Valérie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Finsterer J. Mitochondrial metabolic stroke: Phenotype and genetics of stroke-like episodes. J Neurol Sci 2019; 400:135-141. [PMID: 30946993 DOI: 10.1016/j.jns.2019.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Stroke-like episodes (SLEs) are the hallmark of mitochondrial encephalopathy with lactic acidosis and stroke-like episode (MELAS) syndrome but rarely occur also in other specific or nonspecific mitochondrial disorders. Pathophysiologically, SLLs are most likely due to a regional disruption of the blood-brain barrier triggered by the underlying metabolic defect, epileptic activity, drugs, or other factors. SLEs manifest clinically with a plethora of cerebral manifestations, which not only include features typically seen in ischemic stroke, but also headache, epilepsy, ataxia, visual impairment, vomiting, and psychiatric abnormalities. The morphological correlate of a SLE is the stroke-like lesion (SLL), best visualised on multimodal MRI. In the acute stages, a SLL presents as vasogenic edema but may be mixed up with cytotoxic components. Additionally, SLLs are characterized by hyperperfusion on perfusion studies. In the chronic stage, SLLs present with a colorful picture before they completely disappear, or end up as white matter lesion, cyst, laminar cortical necrosis, focal atrophy, or as toenail sign. Treatment of SLLs is symptomatic and relies on recommendations by experts. Beneficial effects have been reported with nitric-oxide precursors, antiepileptic drugs, antioxidants, the ketogenic diet, and steroids. Lot of research is still needed to uncover the enigma SLE/SLL.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| |
Collapse
|
9
|
Sugai K, Ueda H, Morimoto K, Tanaka M, Takahashi D, Nakashima A, Kato J, Takahashi H, Yamaguchi Y, Kawamura T, Hanaoka K, Miyazaki Y, Yokoo T. Maternally inherited diabetes and deafness complicated by mesangial galactose-deficient IgA1 deposits: a case report. BMC Nephrol 2018; 19:350. [PMID: 30526529 PMCID: PMC6288957 DOI: 10.1186/s12882-018-1152-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Maternally inherited diabetes and deafness (MIDD), a mitochondrial genetic disorder, typically affects the kidneys and results in end-stage renal disease. Early diagnosis of MIDD is challenging when renal manifestations precede other key clinical features such as diabetes and deafness and/or when the disease is complicated by other renal pathologies. Case presentation Here, we present the case of a 33-year-old Japanese woman who had initially been diagnosed with IgA nephropathy but was found to have MIDD 6 years later. Two renal biopsies were conducted six years apart. While assessment of the first biopsy specimen with the monoclonal antibody (KM55) revealed mesangial IgA deposits (containing the galactose-deficient IgA1 variant [Gd-IgA1]), examination of the second specimen showed no mesangial IgA deposits and newly-developed glomerular global scleroses and tubular damage. Granular swollen epithelial cells (GSECs), characterised by abnormal mitochondria, were observed among the tubules and collecting ducts in both biopsy specimens. Mitochondrial DNA analysis revealed an m.3243A > G mutation. Conclusions We rediscovered the usefulness of GSECs as a pathologically distinctive feature of mitochondrial nephropathy and reviewed the literature regarding MIDD complicated by mesangial IgA deposition. Furthermore, we demonstrate that the mesangial IgA deposits in this patient consisted of the galactose-deficient IgA1 variant. The monoclonal antibody (KM55) might be a useful tool to distinguish IgAN from latent IgA deposits.
Collapse
Affiliation(s)
- Keiji Sugai
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ueda
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Tanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Kato
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazushige Hanaoka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Narumi K, Mishima E, Akiyama Y, Matsuhashi T, Nakamichi T, Kisu K, Nishiyama S, Ikenouchi H, Kikuchi A, Izumi R, Miyazaki M, Abe T, Sato H, Ito S. Focal Segmental Glomerulosclerosis Associated with Chronic Progressive External Ophthalmoplegia and Mitochondrial DNA A3243G Mutation. Nephron Clin Pract 2017; 138:243-248. [PMID: 29190634 DOI: 10.1159/000485109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is caused by various etiologies, with mitochondrial dysfunction being one of the causes. FSGS is known to be associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), which is a subclass of mitochondrial disease. However, it has rarely been reported in other mitochondrial disease subclasses. Here, we reported a 20-year-old man diagnosed with FSGS associated with chronic progressive external ophthalmoplegia (CPEO) due to mitochondrial DNA (mtDNA) 3243A>G mutation. He presented with left ptosis, short stature, mild sensorineural deafness, and cardiac conduction block. A renal biopsy sample showed segmental sclerosis and adhesions between capillaries and Bowman's capsule, indicating FSGS. Electron microscopy demonstrated abnormal aggregated mitochondria in podocytes, and the basement membrane and epithelial cells of Bowman's capsule. Skeletal muscle biopsy also showed accumulation of abnormal mitochondria. mtDNA analysis identified heteroplasmic mtDNA 3243A>G mutation with no large-scale deletions. From these findings, we diagnosed the case as CPEO with multi-organ involvement including FSGS. Our report demonstrates that CPEO, as well as MELAS, can be associated with FSGS. Because mitochondrial disease presents with a variety of clinical symptoms, atypical cases with non-classical manifestations are observed. Thus, mitochondrial disease should be considered as an underlying cause of FSGS with systemic manifestations even with atypical phenotypes.
Collapse
Affiliation(s)
- Kaori Narumi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukako Akiyama
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsuhashi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Nakamichi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyomi Kisu
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuhei Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hajime Ikenouchi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Miyazaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Sato
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Finsterer J, Scorza FA. Renal manifestations of primary mitochondrial disorders. Biomed Rep 2017; 6:487-494. [PMID: 28515908 DOI: 10.3892/br.2017.892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present review was to summarize and discuss previous findings concerning renal manifestations of primary mitochondrial disorders (MIDs). A literature review was performed using frequently used databases. The study identified that primary MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or in the later course of the MID. Occasionally, the kidneys are affected in MIDs. Renal manifestations of MIDs include renal insufficiency, nephrolithiasis, nephrotic syndrome, renal cysts, renal tubular acidosis, Bartter-like syndrome, Fanconi syndrome, focal segmental glomerulosclerosis, tubulointerstitial nephritis, nephrocalcinosis, and benign or malign neoplasms. Among the syndromic MIDs, renal involvement has been most frequently reported in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome, Kearns-Sayre syndrome, Leigh syndrome and mitochondrial depletion syndromes. Only in single cases was renal involvement also reported in chronic progressive external ophthalmoplegia, Pearson syndrome, Leber's hereditary optic neuropathy, coenzyme-Q deficiency, X-linked sideroblastic anemia and ataxia, myopathy, lactic acidosis, and sideroblastic anemia, pyruvate dehydrogenase deficiency, growth retardation, aminoaciduria, cholestasis, iron overload, lactacidosis, and early death, and hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis syndrome. The present study proposes that the frequency of renal involvement in MIDs is probably underestimated. Diagnosis of renal involvement follows general guidelines and treatment is symptomatic. Thus, renal manifestations of primary MIDs require recognition and appropriate management, as they determine the outcome of MID patients.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurological Department, Municipal Hospital Rudolfstiftung, A-1030 Vienna, Austria
| | - Fulvio Alexandre Scorza
- Paulista de Medicina School, Federal University of São Paulo, Primeiro Andar CEP, São Paulo 04039-032, SP, Brazil
| |
Collapse
|
12
|
Finsterer J, Wakil SM. Stroke-like episodes, peri-episodic seizures, and MELAS mutations. Eur J Paediatr Neurol 2016; 20:824-829. [PMID: 27562097 DOI: 10.1016/j.ejpn.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Stroke-like episodes (SLEs) are a hallmark of various mitochondrial disorders, in particular MELAS syndrome. SLEs manifest with vasogenic oedema (DWI and ADC hyperintensity) or partial cytotoxic oedema (DWI hyperintensity, ADC hypointensity) in the acute and subacute stage, and with gyriform T1-hyperintensity (cortical necrosis) in the chronic stage. PRINCIPAL RESULTS SLEs must be clearly distinguished from ischaemic stroke, since management of these two entities is different. SLEs may go along with or without seizures or epileptiform discharges on EEG. However, in MELAS syndrome seizures may also occur in the absence of SLEs. Focal and generalised seizures have been reported but it is currently unknown if the one or the other prevail. SLEs with and without seizures may respond to NO-precursors l-arginine, succinate, or citrulline. As a supportive measure a ketogenic diet should be initiated. Seizures prior to or during a SLE or paroxysmal EEG-activity during a SLE should be initially treated with antiepileptic drugs (AEDs) with low mitochondrion-toxicity. Only in case these AEDs are ineffective, AEDs with higher mitochondrion-toxicity should be added. MAJOR CONCLUSIONS All patients with SLEs need to have an EEG recorded irrespective if they have manifesting seizures or not. There are no mtDNA or nDNA mutations which predispose for SLEs with seizures.
Collapse
Affiliation(s)
| | - Salma Majid Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Wang YX, Le WD. Progress in Diagnosing Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes. Chin Med J (Engl) 2016; 128:1820-5. [PMID: 26112726 PMCID: PMC4733719 DOI: 10.4103/0366-6999.159360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a progressive, multisystem affected mitochondrial disease associated with a number of disease-related defective genes. MELAS has unpredictable presentations and clinical course, and it can be commonly misdiagnosed as encephalitis, cerebral infarction, or brain neoplasms. This review aimed to update the diagnosis progress in MELAS, which may provide better understanding of the disease nature and help make the right diagnosis as well. Data Sources: The data used in this review came from published peer review articles from October 1984 to October 2014, which were obtained from PubMed. The search term is “MELAS”. Study Selection: Information selected from those reported studies is mainly based on the progress on clinical features, blood biochemistry, neuroimaging, muscle biopsy, and genetics in diagnosing MELAS. Results: MELAS has a wide heterogeneity in genetics and clinical manifestations. The relationship between mutations and phenotypes remains unclear. Advanced serial functional magnetic resonance imaging (MRI) can provide directional information on this disease. Muscle biopsy has meaningful value in diagnosing MELAS, which shows the presence of ragged red fibers and mosaic appearance of cytochrome oxidase negative fibers. Genetic studies have reported that approximately 80% of MELAS cases are caused by the mutation m.3243A>G of the mitochondrial transfer RNA (Leu (UUR)) gene (MT-TL1). Conclusions: MELAS involves multiple systems with variable clinical symptoms and recurrent episodes. The prognosis of MELAS patients depends on timely diagnosis. Therefore, overall diagnosis of MELAS should be based on the maternal inheritance family history, clinical manifestation, and findings from serial MRI, muscle biopsy, and genetics.
Collapse
Affiliation(s)
| | - Wei-Dong Le
- Department of Neurology; Center for Translational Research of Neurology Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
14
|
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014; 306:F367-78. [PMID: 24305473 DOI: 10.1152/ajprenal.00571.2013] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|