1
|
Hernandez Duran L, Wilson DT, Rymer TL. Exploring behavioral traits over different contexts in four species of Australian funnel-web spiders. Curr Zool 2023; 69:766-774. [PMID: 37876639 PMCID: PMC10591153 DOI: 10.1093/cz/zoac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 10/26/2023] Open
Abstract
Australian funnel-web spiders are arguably the most venomous spiders in the world, with much research focusing on this aspect of their biology. However, other aspects related to their life history, ecology and behaviour have been overlooked. For the first time, we assessed repeatability, namely risk-taking behaviour, aggressiveness and activity in the contexts of predation, conspecific tolerance and exploration of a new territory in four species of Australian funnel-web spiders: two are closely related, Hadronyche valida and H. infensa, and two have overlapping distributions but occupy different habitats, H. cerberea and Atrax robustus. We also compared behaviors between species. At the species level, we found that H. valida showed consistency in risk-taking behavior when exposed to a predator stimulus, aggressiveness against conspecifics, and exploration of a new territory. In contrast, in the other species, only A. robustus showed repeatability in the context of exploration of a new territory. These results suggest that some behavioral traits are likely more flexible than others, and that the repeatability of behaviors may be species-specific in funnel-webs. When we compared species, we found differences in risk-taking behavior and defensiveness. This study provides novel insights to understanding variation in behavioral traits within and between species of funnel-web spiders, suggesting that some behavioral traits are likely context and/or species dependent, as a result of their evolutionary history. These findings provide key insights for understanding the ecological role of behavior and venom deployment in venomous animals, and a greater understanding of behavior in these medically significant and iconic spiders that are of conservation concern.
Collapse
Affiliation(s)
- Linda Hernandez Duran
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| |
Collapse
|
2
|
The Deadly Toxin Arsenal of the Tree-Dwelling Australian Funnel-Web Spiders. Int J Mol Sci 2022; 23:ijms232113077. [PMID: 36361863 PMCID: PMC9658043 DOI: 10.3390/ijms232113077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Collapse
|
3
|
A potential life-threatening Asian funnel-web spider bite (Macrothele gigas) in central Taiwan. Toxicon 2022; 213:83-86. [DOI: 10.1016/j.toxicon.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
|
4
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
5
|
Animal Venoms-Curse or Cure? Biomedicines 2021; 9:biomedicines9040413. [PMID: 33921205 PMCID: PMC8068803 DOI: 10.3390/biomedicines9040413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
An estimated 15% of animals are venomous, with representatives spread across the majority of animal lineages. Animals use venoms for various purposes, such as prey capture and predator deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely negative image in public media and the fact that snakes alone cause an annual global death toll in the hundreds of thousands, with even more people being left disabled or disfigured. Consequently, snake envenomation has recently been reclassified by the World Health Organization as a neglected tropical disease. On the other hand, there has been a growth in recent decades in the global scene of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets. Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides, or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of the “cure” rather than the “curse” prospect of venoms.
Collapse
|
6
|
Opatova V, Hamilton CA, Hedin M, De Oca LM, Král J, Bond JE. Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic Scale Data. Syst Biol 2021; 69:671-707. [PMID: 31841157 DOI: 10.1093/sysbio/syz064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.].
Collapse
Affiliation(s)
- Vera Opatova
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow ID 83844-2329, USA
| | - Marshal Hedin
- Department of Biology, LSN 204E, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Laura Montes De Oca
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 11600, Uruguay
| | - Jiři Král
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, Prague 2 128 44, Czech Republic
| | - Jason E Bond
- Department of Entomology and Nematology, University of California, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
7
|
Kilham HA, Isbister GK. Australian funnel-web spider envenoming. J Paediatr Child Health 2020; 56:1843-1845. [PMID: 32861219 DOI: 10.1111/jpc.15134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Henry A Kilham
- Departments of General Medicine and Ethics, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Sydney Health Ethics, The University of Sydney, Sydney, New South Wales, Australia
| | - Geoff K Isbister
- Clinical Toxicology Research Group, University of Newcastle, New South Wales, Australia.,Department of Clinical Toxicology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Affiliation(s)
- David Isaacs
- Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Fusto G, Bennardo L, Duca ED, Mazzuca D, Tamburi F, Patruno C, Nisticò SP. Spider bites of medical significance in the Mediterranean area: misdiagnosis, clinical features and management. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190100. [PMID: 33061945 PMCID: PMC7534902 DOI: 10.1590/1678-9199-jvatitd-2019-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Despite the disrepute spiders have had for centuries, their bite is a rare
occurrence. In the Mediterranean area, only two of the numerous known species
are considered of medical significance: Latrodectus
tredecimguttatus and Loxosceles rufescens. Spider
bites have no pathognomonic signs or symptoms, therefore most diagnoses are
presumptive; a spider bite can only be diagnosed when a spider (seen at the time
of the bite) is collected and identified by an expert, since most physicians and
patients are unable to recognize a certain spider species or distinguish spiders
from other arthropods. Skin lesions of uncertain etiology are too often
attributed to spider bites. In most cases, these are actually skin and
soft-tissue infections, allergic reactions, dermatoses etc. Misdiagnosing a
wound as a spider bite can lead to delays in appropriate care, cause adverse or
even fatal outcomes and have medical-legal implications. Concerningly,
misinformation on spider bites also affects the medical literature and it
appears there is lack of awareness on current therapeutic indications for
verified bites.
Collapse
Affiliation(s)
- Gabriele Fusto
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi Bennardo
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ester Del Duca
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy.,Department of Dermatology, Mount Sinai Medical Center, New York, USA
| | - Daniela Mazzuca
- Unit of Forensic Pathology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federica Tamburi
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Cataldo Patruno
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Steven Paul Nisticò
- Unit of Dermatology, Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
10
|
Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proc Natl Acad Sci U S A 2020; 117:24920-24928. [PMID: 32958636 DOI: 10.1073/pnas.2004516117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.
Collapse
|
11
|
Dias-Lopes C, Paiva AL, Guerra-Duarte C, Molina F, Felicori L. Venomous Arachnid Diagnostic Assays, Lessons from Past Attempts. Toxins (Basel) 2018; 10:toxins10090365. [PMID: 30201918 PMCID: PMC6162545 DOI: 10.3390/toxins10090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Diagnostic tests for arachnid accidents remain unavailable for patients and clinicians. Together with snakes, these accidents are still a global medical concern, and are recognized as neglected tropical issues. Due to arachnid toxins’ fast mechanism of action, quick detection and quantification of venom is required to accelerate treatment decisions, rationalize therapy, and reduce costs and patient risks. This review aims to understand the current limitations for arachnid venom identification and quantification in biological samples. We benchmarked the already existing initiatives regarding test requirements (sample or biomarkers of choice), performances (time, detection limit, sensitivity and specificity) and their validation (on animal models or on samples from envenomed humans). Our analysis outlines unmet needs for improving diagnosis and consequently treatment of arachnid accidents. Hence, based on lessons from past attempts, we propose a road map for raising best practice guidelines, leading to recommendations for future progress in the development of arachnid diagnostic assays.
Collapse
Affiliation(s)
- Camila Dias-Lopes
- Departamento de Bioquímica e Imunologia, UFMG, Belo Horizonte 31270901, Brazil.
- Colégio Técnico (COLTEC), UFMG, Belo Horizonte 31270901, Brazil.
| | - Ana Luiza Paiva
- Fundação Ezequiel Dias (FUNED), Belo Horizonte 30510010, Brazil.
| | | | - Franck Molina
- Sys2Diag UMR 9005 CNRS Alcediag, 34000 Montpellier, France.
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, UFMG, Belo Horizonte 31270901, Brazil.
| |
Collapse
|
12
|
Clinical consequences of toxic envenomation by spiders. Toxicon 2018; 152:65-70. [DOI: 10.1016/j.toxicon.2018.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 01/17/2023]
|
13
|
Hedin M, Derkarabetian S, Ramírez MJ, Vink C, Bond JE. Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci Rep 2018; 8:1636. [PMID: 29374214 PMCID: PMC5785998 DOI: 10.1038/s41598-018-19946-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/10/2018] [Indexed: 12/27/2022] Open
Abstract
Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classification, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence-capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research.
Collapse
Affiliation(s)
- Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Shahan Derkarabetian
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
- Department of Biology, University of California Riverside, Riverside, California, 92521, USA
| | - Martín J Ramírez
- Division of Arachnology Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cor Vink
- Canterbury Museum Christchurch, Christchurch, 8013, New Zealand
| | - Jason E Bond
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
14
|
Mammola S, Michalik P, Hebets EA, Isaia M. Record breaking achievements by spiders and the scientists who study them. PeerJ 2017; 5:e3972. [PMID: 29104823 PMCID: PMC5668680 DOI: 10.7717/peerj.3972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Organismal biology has been steadily losing fashion in both formal education and scientific research. Simultaneous with this is an observable decrease in the connection between humans, their environment, and the organisms with which they share the planet. Nonetheless, we propose that organismal biology can facilitate scientific observation, discovery, research, and engagement, especially when the organisms of focus are ubiquitous and charismatic animals such as spiders. Despite being often feared, spiders are mysterious and intriguing, offering a useful foundation for the effective teaching and learning of scientific concepts and processes. In order to provide an entryway for teachers and students-as well as scientists themselves-into the biology of spiders, we compiled a list of 99 record breaking achievements by spiders (the "Spider World Records"). We chose a world-record style format, as this is known to be an effective way to intrigue readers of all ages. We highlighted, for example, the largest and smallest spiders, the largest prey eaten, the fastest runners, the highest fliers, the species with the longest sperm, the most venomous species, and many more. We hope that our compilation will inspire science educators to embrace the biology of spiders as a resource that engages students in science learning. By making these achievements accessible to non-arachnologists and arachnologists alike, we suggest that they could be used: (i) by educators to draw in students for science education, (ii) to highlight gaps in current organismal knowledge, and (iii) to suggest novel avenues for future research efforts. Our contribution is not meant to be comprehensive, but aims to raise public awareness on spiders, while also providing an initial database of their record breaking achievements.
Collapse
Affiliation(s)
- Stefano Mammola
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- IUCN SSC Spider and Scorpion Specialist Group, Torino, Italy
| | - Peter Michalik
- Zoologisches Institut und Museum, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Eileen A. Hebets
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- IUCN SSC Spider and Scorpion Specialist Group, Torino, Italy
| |
Collapse
|
15
|
Dangerous arachnids-Fake news or reality? Toxicon 2017; 138:173-183. [PMID: 28866287 DOI: 10.1016/j.toxicon.2017.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/28/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
The public perception of spiders and scorpions is skewed towards the potential harm they can inflict in humans, despite recent scientific evidence that arachnid venom components might be useful as bioinsecticides or even human therapeutics. Nevertheless, arachnids are becoming more popular as pets in Europe, America and Asia, raising the question for regulatory agencies in these regions as to whether they need to take measurements to protect their citizens. In order to decide upon the necessary regulatory steps, they first need to determine which arachnids are actually dangerous to humans. This review therefore provides an overview of the current literature on verified bites and stings from spiders and scorpions with the aim of assessing their potential danger for human health. As a guideline, we also provide a list of those arachnid genera that we consider as potentially dangerous, which includes 10 spider and 11 scorpion genera. The arachnid genera classified as dangerous comprise less than a quarter of all extant scorpion species and only 0.5% of all spiders species, with the actual number most likely being much lower than that, as not all species in those genera might turn out to pose an actual threat for humans. In conclusion, we found that only a small percentage of scorpions and a minute percentage of all spiders can be considered as potentially dangerous to humans. While in some countries of origin the high incidence of envenomations by dangerous arachnids can result in a serious problem to the health system, we assessed the risk that the same species pose when kept as pets under controlled maintenance conditions as significantly lower.
Collapse
|
16
|
Sampaio VS, Gomes AA, Silva IM, Sachett J, Ferreira LCL, Oliveira S, Sabidò M, Chalkidis H, Barbosa Guerra MGV, Salinas JL, Wen FH, Lacerda MVG, Monteiro WM. Low Health System Performance, Indigenous Status and Antivenom Underdosage Correlate with Spider Envenoming Severity in the Remote Brazilian Amazon. PLoS One 2016; 11:e0156386. [PMID: 27227455 PMCID: PMC4881914 DOI: 10.1371/journal.pone.0156386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022] Open
Abstract
Background A better knowledge of the burden and risk factors associated with severity due to spider bites would lead to improved management with a reduction of sequelae usually seen for this neglected health problem, and would ensure proper use of antivenoms in remote localities in the Brazilian Amazon. The aim of this study was to analyze the profile of spider bites reported in the state of Amazonas in the Western Brazilian Amazon, and to investigate potential risk factors associated with severity of envenomation. Methodology/Principal Findings We used a case-control study in order to identify factors associated with spider bite severity in the Western Brazilian Amazon from 2007 to 2014. Patients evolving to any severity criteria were considered cases and those with non-severe bites were included in the control group. All variables were retrieved from the official Brazilian reporting systems. Socioeconomical and environmental components were also included in a multivariable analysis in order to identify ecological determinants of incidence and severity. A total of 1,181 spider bites were recorded, resulting in an incidence of 4 cases per 100,000 person/year. Most of the spider bites occurred in males (65.8%). Bites mostly occurred in rural areas (59.5%). The most affected age group was between 16 and 45 years old (50.9%). A proportion of 39.7% of the bites were related to work activities. Antivenom was prescribed to 39% of the patients. Envenomings recorded from urban areas [Odds ratio (OR) = 0.40 (95%CI = 0.30–0.71; p<0.001)] and living in a municipality with a mean health system performance index (MHSPI >median [OR = 0.64 (95%CI = 0.39–0.75; p<0.001)] were independently associated with decreased risk of severity. Work related accidents [OR = 2.09 (95%CI = 1.49–2.94; p<0.001)], Indigenous status [OR = 2.15 (95%CI = 1.19–3.86; p = 0.011)] and living in a municipality located >300 km away from the state capital Manaus [OR = 1.90 (95%CI = 1.28–2.40; p<0.001)] were independently associated with a risk of severity. Living in a municipality located >300 km away from the state capital Manaus [OR = 1.53 (95%CI = 1.15–2.02; p = 0.003)] and living in a municipality with a MHSPI <median [OR = 1.91 (95%CI = 1.28–2.47; p = 0.002)] increased the odds of antivenom underdosage. Conclusions Spider bites is prevalent across the study region with a higher incidence in the rainy season in rural areas. Spider bites can be painful and lead to local manifestations but rarely result in life-threatening envenoming. Major local complications were dermonecrosis and secondary infection in cases diagnosed as Loxosceles bites. Based on the correlations shown here, envenomings occurring in remote rural areas, Indigenous status and living in a municipality located >300 km away from the state capital Manaus could be contributing factors to higher severity of spider envenomings in this area, as well as to antivenom underdosage.
Collapse
Affiliation(s)
- Vanderson Souza Sampaio
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Núcleo de Sistemas de Informação, Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | - André Alexandre Gomes
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Iran Mendonça Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Luiz Carlos Lima Ferreira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Sâmella Oliveira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Meritxell Sabidò
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Catalunya, Spain
| | - Hipócrates Chalkidis
- Curso de Ciências Biológicas, Faculdades Integradas do Tapajós, Santarém, Pará, Brazil
| | - Maria Graças Vale Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jorge Luis Salinas
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Fan Hui Wen
- Instituto Butantan, Secretaria de Estado da Saúde de São Paulo, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- * E-mail:
| |
Collapse
|
17
|
How informative are case studies of spider bites in the medical literature? Toxicon 2016; 114:40-4. [DOI: 10.1016/j.toxicon.2016.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/23/2022]
|
18
|
Dixit R, Herz J, Dalton R, Booy R. Benefits of using heterologous polyclonal antibodies and potential applications to new and undertreated infectious pathogens. Vaccine 2016; 34:1152-61. [PMID: 26802604 PMCID: PMC7131169 DOI: 10.1016/j.vaccine.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Passive immunotherapy using polyclonal antibodies (immunoglobulins) has been used for over a century in the treatment and post-exposure prophylaxis of various infections and toxins. Heterologous polyclonal antibodies are obtained from animals hyperimmunised with a pathogen or toxin. AIMS The aims of this review are to examine the history of animal polyclonal antibody therapy use, their development into safe and effective products and the potential application to humans for emerging and neglected infectious diseases. METHODS A literature search of OVID Medline and OVID Embase databases was undertaken to identify articles on the safety, efficacy and ongoing development of polyclonal antibodies. The search contained database-specific MeSH and EMTREE terms in combination with pertinent text-words: polyclonal antibodies and rare/neglected diseases, antivenins, immunoglobulins, serum sickness, anaphylaxis, drug safety, post marketing surveillance, rabies, human influenza, Dengue, West Nile, Nipah, Hendra, Marburg, MERS, Hemorrhagic Fever Virus, and Crimean-Congo. No language limits were applied. The final search was completed on 20.06.2015. Of 1960 articles, title searches excluded many irrelevant articles, yielding 303 articles read in full. Of these, 179 are referenced in this study. RESULTS Serum therapy was first used in the 1890s against diphtheria. Early preparation techniques yielded products contaminated with reactogenic animal proteins. The introduction of enzymatic digestion, and purification techniques substantially improved their safety profile. The removal of the Fc fragment of antibodies further reduces hypersensitivity reactions. Clinical studies have demonstrated the efficacy of polyclonal antibodies against various infections, toxins and venoms. Products are being developed against infections for which prophylactic and therapeutic options are currently limited, such as avian influenza, Ebola and other zoonotic viruses. CONCLUSIONS Polyclonal antibodies have been successfully applied to rabies, envenomation and intoxication. Polyclonal production provides an exciting opportunity to revolutionise the prognosis of both longstanding neglected tropical diseases as well as emerging infectious threats to humans.
Collapse
Affiliation(s)
- Rashmi Dixit
- The Children's Hospital, Westmead, Sydney, Australia.
| | | | | | - Robert Booy
- The Children's Hospital, Westmead, Sydney, Australia
| |
Collapse
|
19
|
Miller M, O'Leary MA, Isbister GK. Towards rationalisation of antivenom use in funnel-web spider envenoming: enzyme immunoassays for venom concentrations. Clin Toxicol (Phila) 2015; 54:245-51. [PMID: 26678882 DOI: 10.3109/15563650.2015.1122794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Funnel-web spider (Atrax and Hadronyche spp.) envenoming is rare but causes severe neuromuscular, autonomic, and cardiac effects. A rabbit-derived IgG antivenom is available, but venom detection in patients has not been reported. OBJECTIVE To use serial venom and antivenom concentrations to better define envenoming and antivenom effectiveness. MATERIALS AND METHODS Serum was collected from nine patients with suspected funnel-web spider bites and clinical effects were recorded. Venom-specific enzyme immunoassays were developed to measure funnel-web spider venom and antivenom concentrations. Goat anti-rabbit whole serum was coupled to UltraLink resin and added to samples to remove bound venom and measure free venom. Antivenom efficacy was defined as antivenom binding all free venom and antivenom effectiveness as resolution of clinical features. RESULTS Venom was detectable in samples from six of nine patients. In three patients without venom detected, there were only moderate effects, which did not completely respond to antivenom in all cases and no spider was identified. In five of six cases, a male Atrax spp. (Sydney funnel-web) spider was identified. Three patients had moderate envenoming which responded to antivenom. Three patients had severe envenoming and developed catecholamine-induced myocarditis and acute pulmonary oedema. Although cholinergic and non-specific clinical features appeared to respond to antivenom, myocarditis and pulmonary oedema lasted 2-4 days. Median venom concentration pre-antivenom in five patients with samples was 5.6 ng/ml (3-35 ng/ml), and immediately post-antivenom decreased to a median of 0 ng/ml (0-1.8 ng/ml). Post-antivenom venom concentrations decreased when bound venom was removed; median, 0 ng/ml (0-0.9 ng/ml), indicating that most venom detected post-antivenom was bound. There was recurrence of venom and clinical features in one patient when a pressure bandage was removed. CONCLUSIONS Detection of venom in suspected funnel-web spider bites identified definite cases with characteristic envenoming and a spider was identified. Measurement of venom concentrations pre- and post-antivenom demonstrated that venom was bound by antivenom, but in severe cases cardiac toxicity was not reversed.
Collapse
Affiliation(s)
- Mark Miller
- a Emergency Department , John Hunter Hospital , Newcastle , NSW , Australia
| | - Margaret A O'Leary
- b Clinical Toxicology Research Group , University of Newcastle , Newcastle , NSW , Australia
| | - Geoffrey K Isbister
- b Clinical Toxicology Research Group , University of Newcastle , Newcastle , NSW , Australia ;,c Department of Clinical Toxicology and Pharmacology , Calvary Mater Hospital , Newcastle , NSW , Australia
| |
Collapse
|
20
|
Isbister GK, Sellors KV, Beckmann U, Chiew AL, Downes MA, Berling I. Catecholamine‐induced cardiomyopathy resulting from life‐threatening funnel‐web spider envenoming. Med J Aust 2015; 203:302-4. [DOI: 10.5694/mja15.00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/07/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Geoffrey K Isbister
- University of Newcastle, Newcastle, NSW
- Calvary Mater Newcastle, Newcastle, NSW
| | | | | | - Angela L Chiew
- Prince of Wales Hospital, Sydney, NSW
- University of Sydney, Sydney, NSW
| | | | - Ingrid Berling
- University of Newcastle, Newcastle, NSW
- Calvary Mater Newcastle, Newcastle, NSW
| |
Collapse
|
21
|
Vetter RS, Swanson DL, Weinstein SA, White J. Do spiders vector bacteria during bites? The evidence indicates otherwise. Toxicon 2015; 93:171-4. [DOI: 10.1016/j.toxicon.2014.11.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
|
22
|
Palagi A, Koh JM, Leblanc M, Wilson D, Dutertre S, King GF, Nicholson GM, Escoubas P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteomics 2013; 80:292-310. [DOI: 10.1016/j.jprot.2013.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
23
|
Del Brutto OH. Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. HANDBOOK OF CLINICAL NEUROLOGY 2013; 114:349-68. [PMID: 23829924 DOI: 10.1016/b978-0-444-53490-3.00028-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Snake and spider bites, as well as scorpion sting envenoming, are neglected diseases affecting millions of people all over the world. Neurological complications vary according to the offending animal, and are often directly related to toxic effects of the venom, affecting the central nervous system, the neuromuscular transmission, the cardiovascular system, or the coagulation cascade. Snake bite envenoming may result in stroke or muscle paralysis. Metalloproteinases and other substances (common in vipers and colubrids) have anticoagulant or procoagulant activity, and may induce ischemic or hemorrhagic strokes. The venom of elapids is rich in neurotoxins affecting the neuromuscular transmission at either presynaptic or postsynaptic levels. The clinical picture of scorpion sting envenoming is dominated by muscle weakness associated with arterial hypertension, cardiac arrythmias, myocarditis, or pulmonary edema. These manifestations occur as the result of release of catecholamines into the bloodstream or due to direct cardiac toxicity of the venom. Cerebrovascular complications have been reported after the sting of the Indian red scorpion. Intracranial hemorrhages occur in the setting of acute increases in arterial blood pressure related to sympathetic overstimulation, and cerebral infarctions are related to either cerebral hypoperfusion, consumption coagulopathy, vasculitis, or cardiogenic brain embolism. Three main syndromes result from spider bite envenoming: latrodectism, loxoscelism, and funnel-web spider envenoming. Latrodectism is related to neurotoxins present in the venom of widow spiders. Most cases present with headache, lethargy, irritability, myalgia, tremor, fasciculation, or ataxia. Loxoscelism is caused by envenoming by spiders of the family Sicariidae. It may present with a stroke due to a severe coagulopathy. The venom of funnel-web spiders also has neurotoxins that stimulate neurotransmitter release, resulting in sensory disturbances and muscle paralysis. Proper management of the envenomed patient, including prompt transport to the hospital, correction of the hemostatic disorder, ventilatory support, and administration of antivenom, significantly reduce the risk of neurological complications which, in turn, reduce the mortality and improve the functional outcome of survivors.
Collapse
Affiliation(s)
- Oscar H Del Brutto
- School of Medicine, Universidad Espiritu Santo, Guayaquil, Ecuador; Department of Neurological Sciences, Hospital Clinica Kennedy, Guayaquil, Ecuador.
| |
Collapse
|
24
|
Abstract
Envenomations by toxic creatures is a global health problem with an annual mortality from snake envenomation of over 125,000 cases. While various snake species bites are the most commonly encountered fatal envenomation, scorpions, spiders and marine creatures can all cause fatalities. Although venomous creatures have specific geographical habitats, the keeping of exotic pets and modern transportation, along with venomous collections in zoos, means that fatal envenomations may be encountered in non-endemic areas. There are a variety of toxins that may be encountered including neurotoxins, proteases, and myotoxins that will result in a variable amount of tissue damage depending upon the species involved and the toxin they carry. The autopsy findings may be relatively nonspecific and a careful search of the skin may be required to identify the envenomation site, along with a consideration of the history and the scene. External and internal damage will vary with the specific toxin. This paper reviews fatal envenomations, the toxinology and likely autopsy findings.
Collapse
Affiliation(s)
- Kona Williams
- University of Ottawa - Pathology and Laboratory Medicine, Ottawa, Canada. (KW)
| | - Chris Milroy
- Forensic Pathologist with the Eastern Ontario Regional Forensic Pathology Unit, The Ottawa Hospital and The University of Ottawa in Ottawa, Canada
- University of Ottawa - Pathology and Laboratory Medicine, Ottawa, Canada. (KW)
| |
Collapse
|
25
|
Abstract
Spiders are a source of intrigue and fear, and several myths exist about their medical effects. Many people believe that bites from various spider species cause necrotic ulceration, despite evidence that most suspected cases of necrotic arachnidism are caused by something other than a spider bite. Latrodectism and loxoscelism are the most important clinical syndromes resulting from spider bite. Latrodectism results from bites by widow spiders (Latrodectus spp) and causes local, regional, or generalised pain associated with non-specific symptoms and autonomic effects. Loxoscelism is caused by Loxosceles spp, and the cutaneous form manifests as pain and erythema that can develop into a necrotic ulcer. Systemic loxoscelism is characterised by intravascular haemolysis and renal failure on occasion. Other important spiders include the Australian funnel-web spider (Atrax spp and Hadronyche spp) and the armed spider (Phoneutria spp) from Brazil. Antivenoms are an important treatment for spider envenomation but have been less successful than have those for snake envenomation, with concerns about their effectiveness for both latrodectism and loxoscelism.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW, Australia; Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW, Australia.
| | - Hui Wen Fan
- Centro de Desenvolvimento Cultural, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
26
|
|
27
|
|
28
|
Nayar R, Tehrani H, Nelson K, Khan I. Osteo-cutaneous necrosis following a spider bite to the thumb. EUROPEAN JOURNAL OF PLASTIC SURGERY 2009. [DOI: 10.1007/s00238-009-0353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Isbister GK. Antivenom efficacy or effectiveness: the Australian experience. Toxicology 2009; 268:148-54. [PMID: 19782716 DOI: 10.1016/j.tox.2009.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/19/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
Despite widespread use of antivenoms, many questions remain about their effectiveness in the clinical setting. The almost universal acceptance of their value is based mainly on in vitro studies, animal studies and human observational studies. Numerous examples exist where they demonstrate clear benefit, such as consumption coagulopathy in viper envenoming, prevention of neurotoxicity in Australasian elapid bites, systemic effects in scorpion and funnel-web spider envenoming. There are also concerns about the quality and efficacy of some antivenoms. However, it is important not to confuse the efficacy of antivenom, defined as its ability to bind and neutralise venom-mediated effects under ideal conditions, and the effectiveness of antivenom, defined as its ability to reverse or prevent envenoming in human cases. There are numerous potential reasons for antivenom failure in human envenoming, of which antivenom inefficacy is only one. Other important reasons include venom-mediated effects being irreversible, antivenom being unable to reach the site of toxin-mediated injury, or the rapidity of onset of venom-mediated effects. A number of recent studies in Australia bring into question the effectiveness of some antivenoms, including snake antivenom for coagulopathy, redback spider and box jellyfish antivenoms. Despite brown snake antivenom being able to neutralise venom induced clotting in vitro, use of the antivenom in human envenoming does not appear to change the time course of coagulopathy. However, it is important that apparent antivenom ineffectiveness in specific cases is correctly interpreted and does not lead to a universal belief that antivenom is ineffective. It should rather encourage further studies to investigate the underlying pathophysiology of envenoming, the pharmacokinetics of venoms and antivenoms, and ultimately the effectiveness of antivenom based on snake type, clinical effects and timing of administration.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
30
|
Rosengren D, White J, Raven R, Rothwell S. First report of a funnel-web spider envenoming syndrome in Brisbane. Emerg Med Australas 2008; 20:164-6. [DOI: 10.1111/j.1742-6723.2008.01069.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
|
32
|
Abstract
Spiders have been incriminated as causes of human suffering for centuries, but few species worldwide cause medically significant envenomation. Widow spiders (Latrodectus spp.) occur worldwide and cause latrodectism, which is characterized by pain (local and generalized) associated with nonspecific systemic effects, diaphoresis, and less commonly other autonomic and neurological effects. Recluse spiders (Loxosceles spp.) are distributed mostly through the tropical and subtropical Western Hemisphere and can cause severe skin lesions and rarely systemic effects; most bites are unremarkable. Highly dangerous spiders in South America (armed spiders) and Australia (funnel-web spiders) cause rare but severe envenomation requiring medical intervention and sometimes antivenom. Most other spiders involved in verified bites cause minor, transient effects. Many spiders blamed for causing medical mischief have been elevated to medical significance via circumstantial evidence, poor reporting, and repetitive citation in the literature; several species have been shown to be harmless with more stringent scientific evidence involving verified bites in humans.
Collapse
Affiliation(s)
- Richard S Vetter
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
33
|
Nicholson GM, Graudins A, Wilson HI, Little M, Broady KW. Arachnid toxinology in Australia: From clinical toxicology to potential applications. Toxicon 2006; 48:872-98. [PMID: 16934848 DOI: 10.1016/j.toxicon.2006.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The unique geographic isolation of Australia has resulted in the evolution of a distinctive range of Australian arachnid fauna. Through the pioneering work of a number of Australian arachnologists, toxinologists, and clinicians, the taxonomy and distribution of new species, the effective clinical treatment of envenomation, and the isolation and characterisation of the many distinctive neurotoxins, has been achieved. In particular, work has focussed on several Australian arachnids, including red-back and funnel-web spiders, paralysis ticks, and buthid scorpions that contain neurotoxins capable of causing death or serious systemic envenomation. In the case of spiders, species-specific antivenoms have been developed to treat envenomed patients that show considerable cross-reactivity. Both in vitro and clinical case studies have shown they are particularly efficacious in the treatment of envenomation by spiders even from unrelated families. Despite their notorious reputation, the high selectivity and potency of a unique range of toxins from the venom of Australian arachnids will make them invaluable molecular tools for studies of neurotransmitter release and vesicle exocytosis as well as ion channel structure and function. The venoms of funnel-web spiders, and more recently Australian scorpions, have also provided a previously untapped rich source of insect-selective neurotoxins for the future development of biopesticides and the characterisation of previously unvalidated insecticide targets. This review provides a historical viewpoint of the work of many toxinologists to isolate and characterise just some of the toxins produced by such a unique group of arachnids and examines the potential applications of these novel peptides.
Collapse
Affiliation(s)
- Graham M Nicholson
- Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, City Campus, Broadway, NSW 2007, Australia.
| | | | | | | | | |
Collapse
|