1
|
Li Z, Liu Z, Gao Y, Tang B, Gu S, Luo C, Lui S. Functional brain controllability in Parkinson's disease and its association with motor outcomes after deep brain stimulation. Front Neurosci 2024; 18:1433577. [PMID: 39575098 PMCID: PMC11578951 DOI: 10.3389/fnins.2024.1433577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Considering the high economic burden and risks of deep brain stimulation (DBS) surgical failure, predicting the motor outcomes of DBS in Parkinson's disease (PD) is of significant importance in clinical decision-making. Functional controllability provides a rationale for combining the abnormal connections of the cortico-striato-thalamic-cortical (CSTC) motor loops and dynamic changes after medication in DBS outcome prediction. Methods In this study, we analyzed the association between preoperative delta functional controllability after medication within CSTC loops and motor outcomes of subthalamic nucleus DBS (STN-DBS) and globus pallidus interna DBS (GPi-DBS) and predicted motor outcomes in a Support Vector Regression (SVR) model using the delta controllability of focal regions. Results While the STN-DBS motor outcomes were associated with the delta functional controllability of the thalamus, the GPi-DBS motor outcomes were related to the delta functional controllability of the caudate nucleus and postcentral gyrus. In the SVR model, the predicted and actual motor outcomes were positively correlated, with p = 0.020 and R = 0.514 in the STN-DBS group, and p = 0.011 and R = 0.705 in the GPi- DBS group. Discussion Our findings indicate that different focal regions within the CSTC motor loops are involved in STN-DBS and GPi-DBS and support the feasibility of functional controllability in predicting DBS motor outcomes for PD in clinical decision-making.
Collapse
Affiliation(s)
- Ziyu Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Zhiqin Liu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Guoxue Xiang, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxue Xiang, Chengdu, China
| |
Collapse
|
2
|
Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková Š, Strnad M, Voller J, Chanda K. Novel neuroprotective 5,6-dihydropyrido[2',1':2,3]imidazo[4,5-c]quinoline derivatives acting through cholinesterase inhibition and CB2 signaling modulation. Eur J Med Chem 2024; 276:116592. [PMID: 39013357 DOI: 10.1016/j.ejmech.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, 77520, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic.
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Wang Q, Liu F, Wang X, Zhong L, Cai B, Chen T. Identifying potential repurposable medications for Parkinson's disease through Mendelian randomization analysis. Sci Rep 2024; 14:19670. [PMID: 39181920 PMCID: PMC11344818 DOI: 10.1038/s41598-024-70758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Observational studies have suggested the potential benefits of several medications for Parkinson's disease (PD) and their potential for repurposing. However, the conclusions drawn from these studies are not entirely consistent. To address this inconsistency, we used the two-sample Mendelian randomization (MR) method to explore the putative causal relationships between 23 medications and the risk and progression of PD. We applied inverse-variance weighted meta-analysis (IVW) to combine MR estimates. Additionally, sensitivity analyses were conducted to evaluate the robustness of the results. Our genetic evidence suggests that thyroid preparations and calcium channel blockers reduce the risk of PD, and salicylic acid and derivatives slow the progression of PD motor symptoms. Additionally, genetic evidence also suggests that four medications were associated with PD risk or progression, but the sensitivity analysis revealed that three of the medications may have interference caused by reverse causality. Our findings suggest that there are weak causal relationships between several medications and the risk or progression of PD. Though further replication studies are needed to verify these findings, these new insights may help in understanding the etiology of the disease, generate new clues related to drug discovery, and quantify the risk of future drug intake.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
4
|
Li K, Xu S, Wang R, Zou X, Liu H, Fan C, Li J, Li G, Wu Y, Ma X, Chen Y, Hu C, Liu X, Yuan C, Ye Q, Dai M, Wu L, Wang Z, Wu H. Electroacupuncture for motor dysfunction and constipation in patients with Parkinson's disease: a randomised controlled multi-centre trial. EClinicalMedicine 2023; 56:101814. [PMID: 36691434 PMCID: PMC9860357 DOI: 10.1016/j.eclinm.2022.101814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Motor disturbances and non-motor disturbances such as constipation are the main factors affecting the quality of life in patients with Parkinson's disease (PD). We investigated the efficacy and safety of electroacupuncture combined with conventional pharmacological treatment on motor dysfunction and constipation in PD. METHODS In this multi-centre randomised controlled trial, we enrolled 166 eligible participants between September 19, 2018 and September 25, 2019 in four hospitals in China. Participants were randomly assigned (1:1) to the electroacupuncture (EA) group and the waitlist control group. Each participant in both groups received the conventional pharmacological treatment, EA group received 3 sessions of electroacupuncture per week for 12 weeks. The primary outcome was the change in the Unified Parkinson's Disease Rating Scale (UPDRS) score from baseline to week 12. The secondary outcomes included the evaluation of functional disability in motor symptoms and constipation, the adherence and adverse events were also recorded. Registered with Chictr.org.cn, ChiCTR1800019517. FINDINGS At week 12, the change in the UPDRS score of the EA group was significantly higher than that of the control group, with a difference of -9.1 points (95% CI, -11.8 to -6.4), and this difference continued into weeks 16 and 24. From baseline to week 12, the 39-item Parkinson Disease Question (PDQ-39) decreased by 10 points (interquartile range, IQR -26.0 to 0.0) in the EA group and 2.5 points (IQR: -11.0 to 4.0) in the control group, the difference was statistically significant. The time and steps for the 20-m walk at week 12, as well as the changes from baseline in the EA group, were comparable with that in the control group. But the EA group had a greater decrease than the control group from baseline in the times for 20-m walks at weeks 16 and 24. From week 4 to week 24, the median values of spontaneous bowel movements (SBMs) per week in the EA group were higher than that in the control group, the differences were all statistically significant. The incidence of EA-related adverse events during treatment was low, and they are mild and transient. INTERPRETATION The findings of our study suggested that compared with conventional pharmacological treatment, conventional pharmacological treatment combined with electroacupuncture significantly enhances motor function and increased bowel movements in patients with PD, electroacupuncture is a safe and effective treatment for PD. FUNDING Shanghai "Science and Technology Innovation Action Plan" Clinical Medicine Field Project (18401970700), Shanghai Special Project on Aging and Women's and Children's Health Research (020YJZX0134), Shanghai Clinical Research Centre for Acupuncture and Moxibustion (20MC1920500).
Collapse
Key Words
- CCS, Chronic constipation severity scale
- Constipation
- EA, Electroacupuncture
- Electroacupuncture
- ITT, Intention-to-treat
- LED, Levodopa equivalent dose
- MMSE, Mini-Mental State Examination
- Motor dysfunction
- PAC-QOL, Patient assessment of constipation quality of life
- PD, Parkinson's disease
- PDQ-39, 39-item Parkinson Disease Question
- Parkinson's disease
- SBMs, Spontaneous bowel movements
- UPDRS, Unified Parkinson’s Disease Rating Scale
- VAS, Visual Analogue Scale
Collapse
Affiliation(s)
- Kunshan Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ruiping Wang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, China
| | - Xuan Zou
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunhai Fan
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guona Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiwen Wu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiyi Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chenfang Hu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiru Liu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Canxing Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ming Dai
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Luyi Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| | - Zhaoqin Wang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| |
Collapse
|
5
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
6
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
7
|
McGee C, Liebert A, Herkes G, Bicknell B, Pang V, McLachlan CS, Kiat H. Protocol for randomized controlled trial to evaluate the safety and feasibility of a novel helmet to deliver transcranial light emitting diodes photobiomodulation therapy to patients with Parkinson’s disease. Front Neurosci 2022; 16:945796. [PMID: 36061601 PMCID: PMC9428720 DOI: 10.3389/fnins.2022.945796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Parkinson’s disease (PD) is the second most common, progressive, and debilitating neurodegenerative disease associated with aging and the most common movement disorder. Photobiomodulation (PBM), the use of non-thermal light for therapeutic purposes using laser or light emitting diodes (LED) is an emerging non-invasive treatment for a diverse range of neurological conditions. The main objectives of this clinical trial are to investigate the feasibility, safety, tolerability, and efficacy of a novel transcranial LED helmet device (the “PDNeuro”) in the alleviation of symptoms of PD. Methods and analysis This is a 24-week, two-arm, triple-blinded randomized placebo-controlled clinical trial of a novel transcranial “PDNeuro” LED Helmet, comparing an active helmet to a sham helmet device. In a survey, 40 PD participants with Hoehn and Yahr Stage I–III during ON periods will be enrolled and randomly assigned into two groups. Both groups will be monitored weekly for the safety and tolerability of the “PDNeuro” LED Helmet. Clinical signs and symptoms assessed will include mobility, fine motor skills and cognition, with data collected at baseline, 12 weeks, and 24 weeks. Assessment tools include the TUG, UPDRS, and MoCA all validated for use in PD patients. Patient’s adherence to the device usage and participant drop out will be monitored weekly. At 12 weeks both placebo and treatment groups will crossover and placebo participants offered the treatment. The main indicator for clinical efficacy of the “PDneuro” Helmet is evidence of sustained improvements in motor and non-motor symptoms obtained from participant self-reported changes, carer reporting of changes and objective reassessment by the investigators. The outcomes will assist in a future larger randomized trial design. Clinical Trial Registration [https://www.anzctr.org.au], identifier [12621001722886].
Collapse
Affiliation(s)
- Claire McGee
- Faculty of Health Sciences, Torrens University, Sydney, NSW, Australia
| | - Ann Liebert
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Department of Research and Governance, San Hospital, Wahroonga, NSW, Australia
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, Australia
- *Correspondence: Ann Liebert,
| | - Geoffrey Herkes
- Department of Neurology, San Hospital, Wahroonga, NSW, Australia
- Australian National University, Canberra, ACT, Australia
| | - Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, Australia
| | - Vincent Pang
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, Australia
| | | | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, Australia
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- Cardiac Health Institute, Sydney, NSW, Australia
| |
Collapse
|
8
|
Koponen M, Bell JS, Lalic S, Watson R, Koivisto AM, Ilomäki J. Treatment initiation for parkinson’s disease in Australia 2013–2018: a nation-wide study. BMC Geriatr 2022; 22:483. [PMID: 35658842 PMCID: PMC9166304 DOI: 10.1186/s12877-022-03095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Guidelines highlight the importance of an individualized approach to treatment initiation for Parkinson’s disease. Our aim was to investigate initiation of anti-Parkinson medication in Australia from 2013–2018, and to determine factors predicting choice of initial treatment. Methods Cohort of new-users (N = 4,887) of anti-Parkinson medication aged ≥ 40 years were identified from a 10% random representative sample of national medication dispensing data from July-2013 to June-2018. Changes in treatment initiation were examined across the whole cohort and stratified by age and sex. Results Treatment initiation was most frequent with levodopa followed by non-ergot dopamine agonists (DAs) and anticholinergics. Two thirds initiated with levodopa across the study period. Initiation with non-ergot DAs increased from 22 to 27% (rate ratio, RR 1.23, 95% confidence interval, CI 1.02–1.47) and initiation with anticholinergics decreased from 6.9% to 2.4% (RR 0.34, 95% CI 0.21–0.55) from 2013–2018. Among persons aged ≥ 65 years, one third of women and one fourth of men initiated on levodopa. Among women aged < 65 years, rates of treatment initiation with DAs (37%) and levodopa (37%) were similar in 2013/2014 but initiation with DA exceeded levodopa thereafter. Among men aged < 65 years, treatment initiation with levodopa (44%-49%) remained more frequent than initiation with DAs (29%-32%) throughout the study period. Conclusions Treatment initiation with levodopa was most frequent among persons aged ≥ 65 years, consistent with current guidelines. Whilst the value of levodopa sparing strategies is unclear, treatment initiation with DA has become increasingly common relative to levodopa among women but not among men aged < 65 years. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03095-3.
Collapse
|
9
|
Moussa M, Abou Chakra M, Papatsoris AG, Dellis A, Dabboucy B, Peyromaure M, Barry Delongchamps N, Bailly H, Duquesne I. Perspectives on the urological care in Parkinson's disease patients. Arch Ital Urol Androl 2022; 94:107-117. [PMID: 35352535 DOI: 10.4081/aiua.2022.1.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is recognized as the most common neurodegenerative disorder after Alzheimer's disease. Lower urinary tract symptoms are common in patients with PD, either storage symptoms (overactive bladder symptoms or OAB) or voiding symptoms. The most important diagnostic clues for urinary disturbances are provided by the patient's medical history. Urodynamic evaluation allows the determination of the underlying bladder disorder and may help in the treatment selection. Pharmacologic interventions especially anticholinergic medications are the first-line option for treating OAB in patients with PD. However, it is important to balance the therapeutic benefits of these drugs with their potential adverse effects. Intra-detrusor Botulinum toxin injections, electrical stimulation were also used to treat OAB in those patients with variable efficacy. Mirabegron is a β3-agonist that can also be used for OAB with superior tolerability to anticholinergics. Desmopressin is effective for the management of nocturnal polyuria which has been reported to be common in PD. Deep brain stimulation (DBS) surgery is effective in improving urinary functions in PD patients. Sexual dysfunction is also common in PD. Phosphodiesterase type 5 inhibitors are first-line therapies for PD-associated erectile dysfunction (ED). Treatment with apomorphine sublingually is another therapeutic option for PD patients with ED. Pathologic hypersexuality has occasionally been reported in patients with PD, linked to dopaminergic agonists. The first step of treatment of hypersexuality consists of reducing the dose of dopaminergic medication. This review summarizes the epidemiology, pathogenesis, risk factors, genetic, clinical manifestations, diagnostic test, and management of PD. Lastly, the urologic outcomes and therapies are reviewed.
Collapse
Affiliation(s)
- Mohamad Moussa
- Urology Department, Zahraa Hospital, University Medical Center, Beirut.
| | - Mohamad Abou Chakra
- Department of Urology, Faculty of Medical Sciences, Lebanese University, Beirut.
| | - Athanasios G Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens.
| | | | - Baraa Dabboucy
- Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut.
| | - Michael Peyromaure
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Nicolas Barry Delongchamps
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Hugo Bailly
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| |
Collapse
|
10
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
11
|
Shen W, Jiang L, Zhao J, Wang H, Hu M, Chen L, Chen Y. Bioactive lipids and their metabolism: new therapeutic opportunities for Parkinson's disease. Eur J Neurosci 2021; 55:846-872. [PMID: 34904314 DOI: 10.1111/ejn.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, which can also be associated with non-motor symptoms. Its pathogenesis is thought to stem from a loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of Lewy bodies containing aggregated α-synuclein. Recent works suggested that lipids might play a pivotal role in the pathophysiology of PD. In particular, the so-called "bioactive" lipids whose changes in the concentration may lead to functional consequences and affect many pathophysiological processes, including neuroinflammation, are closely related to PD in terms of symptoms, disease progression, and incidence. This study aimed to explore the molecular metabolism and physiological functions of bioactive lipids, such as fatty acids (mainly unsaturated fatty acids), eicosanoids, endocannabinoids, oxysterols, representative sphingolipids, diacylglycerols, and lysophosphatidic acid, in the development of PD. The knowledge of bioactive lipids in PD gained through preclinical and clinical studies is expected to improve the understanding of disease pathogenesis and provide novel therapeutic avenues.
Collapse
Affiliation(s)
- Wenjing Shen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Jiang
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jingyi Zhao
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Haili Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning, China
| | - Meng Hu
- The Second Xiangya Hospital, Central Sounth University, Changsha, Hunan Province, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Li X, Fan X, Yang H, Liu Y. Review of Metabolomics-Based Biomarker Research for Parkinson's Disease. Mol Neurobiol 2021; 59:1041-1057. [PMID: 34826053 DOI: 10.1007/s12035-021-02657-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is seriously affecting the life quality of the elderly. However, there is still a lack of efficient medical methods to diagnosis PD before apparent symptoms occur. In recent years, clinical biomarkers including genetic, imaging, and tissue markers have exhibited remarkable benefits in assisting PD diagnoses. Due to the advantages of high-throughput detection of metabolites and almost non-invasive sample collection, metabolomics research of PD is widely used for diagnostic biomarker discovery. However, there are also a few shortages for those identified biomarkers, such as the scarcity of verifications regarding the sensitivity and specificity. Thus, reviewing the research progress of PD biomarkers based on metabolomics techniques is of great significance for developing PD diagnosis. To comprehensively clarify the progress of current metabolic biomarker studies in PD, we reviewed 20 research articles regarding the discovery and validation of biomarkers for PD diagnosis from three mainstream academic databases (NIH PubMed, ISI Web of Science, and Elsevier ScienceDirect). By analyzing those materials, we summarized the metabolic biomarkers identified by those metabolomics studies and discussed the potential approaches used for biomarker verifications. In conclusion, this review provides a comprehensive and updated overview of PD metabolomics research in the past two decades and particularly discusses the validation of disease biomarkers. We hope those discussions might provide inspiration for PD biomarker discovery and verification in the future.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Liaoning Province, 110036, Shenyang, People's Republic of China
| | - Xiaoying Fan
- School of Pharmaceutical Sciences, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Liaoning Province, 110036, Shenyang, People's Republic of China
| | - Hongtian Yang
- School of Pharmaceutical Sciences, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Liaoning Province, 110036, Shenyang, People's Republic of China
| | - Yufeng Liu
- School of Pharmaceutical Sciences, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Liaoning Province, 110036, Shenyang, People's Republic of China. .,Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
13
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
14
|
Yen K, Miyasaki JM, Waldron M, Yu L, Sankar T, Ba F. DBS-Edmonton App, a Tool to Manage Patient Expectations of DBS in Parkinson Disease. Neurol Clin Pract 2021; 11:e308-e316. [PMID: 34484906 DOI: 10.1212/cpj.0000000000000962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Objective After deep brain stimulation (DBS) for Parkinson disease (PD), patients often do not report the level of satisfaction anticipated. This misalignment can relate to patients' expectations for an invasive treatment and insufficient knowledge of DBS's effectiveness in relieving motor and nonmotor symptoms (NMS). Patient satisfaction depends on expectations and goals for treatment. We hypothesized that improving patient education with a patient-centered shared decision-making tool emphasizing autonomy would improve patient satisfaction and clinical outcome. Methods We developed a computer application (DBS-Edmonton app), allowing patients with PD to input their symptoms and to learn how effective DBS addresses their prioritized symptoms. Sixty-two volunteers referred for DBS used the DBS-Edmonton app. DBS-related knowledge and patient perceptions of the DBS-Edmonton app were assessed with pre- and post-use questionnaires. Fourteen of 24 patients who proceeded to DBS achieved optimization at 6 months. Perceived functional improvement was assessed and compared with 12 control patients with DBS who did not use the DBS-Edmonton app. Results All 62 volunteers considered the DBS-Edmonton app helpful and would recommend it to others. There was improved knowledge about how NMS and axial symptoms respond to DBS. Postoperatively, there was no significant difference in symptoms improvement assessed by standard scales between the groups. Volunteers who used the DBS-Edmonton app had greater satisfaction (p = 0.014). Conclusion This interventional study showed that the DBS-Edmonton app improved DBS-related knowledge and patient satisfaction, independent of the objective motor outcome. It may assist patients in deciding to proceed to DBS and can be easily incorporated into practice to improve patient satisfaction post-DBS.
Collapse
Affiliation(s)
- Kevin Yen
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Janis M Miyasaki
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Michelle Waldron
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lin Yu
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Tejas Sankar
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Fang Ba
- Parkinson and Movement Disorders Program (KY, JMM, MW, FB), Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, School of Public Health (LY), and Division of Neurosurgery (TS), Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S, Azad MAM, Ebrahimi-Barough S. Pesticides and Parkinson's disease: Current and future perspective. J Chem Neuroanat 2021; 115:101966. [PMID: 33991619 DOI: 10.1016/j.jchemneu.2021.101966] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Inappropriate use of pesticides has globally exposed mankind to a number of health hazards. Still their production is rising at the rate of 11 % annually and, has already exceeded more than 5 million tons in 2000 (FAO 2017). Plenty of available data reveals that pesticides exposures through agricultural use and food-preservative residue consumption may lead to neurodegenerative disorders like Parkinson's and Alzheimer's diseases. Parkinson's disease (PD) is a progressive motor impairment and a neurodegenerative disorder, considered as the leading source of motor disability. Pesticides strongly inhibit mitochondrial Complex-I, causing mitochondrial dysfunction and death of dopaminergic neurons in the substantia nigra (SN), thus leading to pathophysiologic implications of PD. Current medical treatment strategies, including pharmacotherapeutics and supportive therapies can only provide symptomatic relief. While complementary and alternative medicines including traditional medicine or acupuncture are considered as beneficial ways of treatment with significant clinical effect. Medically non-responding cases can be treated by surgical means, 'Deep Brain Stimulation'. Cell therapy is also an emerging and promising technology for disease modeling and drug development in PD. Their main aim is to replace and/or support the lost and dying dopaminergic neurons in the SN. Recently I/II clinical phase trial (Japan) have used dopaminergic progenitors generated from induced pluripotent stem (iPS) cells which can unveil a successful cell therapy to treat PD symptoms efficiently. This review focuses on PD caused by pesticides use, current treatment modalities, and ongoing research updates. Since PD is not a cell-autonomous disease rather caused by multiple factors, a combinatorial therapeutic approach may address not only the motor-related symptoms but also non-motor cognitive-behavioral issues.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| | - Fazli Azim
- Dept. of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; IHITC: Isolation Hospital & Infection Treatment Centre, Islamabad, Pakistan.
| | - Hedaeytullah Saju
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Arman Zargaran
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Meysam Shirzad
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Mostofa Kamal
- Shaheed Suhrawardi Medical College & Hospital, Dhaka, Bangladesh.
| | - Kaniz Fatema
- National Institute of Cardiovascular Diseases and Hospital (NICVD), Dhaka, Bangladesh.
| | - Sumbul Rehman
- Faculty of Unani Medicine, Department of Ilmul Advia (Unani Pharmacology), Aligarh Muslim University, India.
| | - M A Momith Azad
- Dept of Research & Product Development (Natural Medicine), The IBN SINA Pharma Ltd, Bangladesh.
| | - Somayeh Ebrahimi-Barough
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
17
|
Mathur S, Stamford J. Bringing Advanced Therapies for Parkinson's Disease to the Clinic: The Patient's Perspective. JOURNAL OF PARKINSONS DISEASE 2021; 11:S141-S145. [PMID: 33967058 PMCID: PMC8543244 DOI: 10.3233/jpd-212650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an urgent unmet need in the Parkinson’s disease community—advanced therapies to modify the inevitable decline that occurs in those affected by this progressive neurodegenerative disease for which there is no cure. This will require collaboration from all stakeholders and central to those partnerships are patients themselves. But participation in clinical trials and clinical use of advanced therapies have their own risk profile above and beyond standard therapeutics as evidenced by past invasive procedures. Therefore, it is of utmost importance that clear, evidence-based information about these potential treatments be clearly communicated by those exploring their use to ensure safe and informed participation from the patient community. Likewise, patients must weigh the benefits of these treatments their limitations and risks in order to truly give informed consent to participate in bringing these treatments to the clinic. Here we explore these issues from the patient perspective.
Collapse
Affiliation(s)
| | - Jon Stamford
- Gentleman Neuroscientist and Independent Parkinson's Advocate
| |
Collapse
|
18
|
Zhang YT, He KJ, Zhang JB, Ma QH, Wang F, Liu CF. Advances in intranasal application of stem cells in the treatment of central nervous system diseases. Stem Cell Res Ther 2021; 12:210. [PMID: 33762014 PMCID: PMC7992869 DOI: 10.1186/s13287-021-02274-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells are characterized by their self-renewal and multipotency and have great potential in the therapy of various disorders. However, the blood-brain barrier (BBB) limits the application of stem cells in the therapy of neurological disorders, especially in a noninvasive way. It has been shown that small molecular substances, macromolecular proteins, and even stem cells can bypass the BBB and reach the brain parenchyma following intranasal administration. Here, we review the possible brain-entry routes of transnasal treatment, the cell types, and diseases involved in intranasal stem cell therapy, and discuss its advantages and disadvantages in the treatment of central nervous system diseases, to provide a reference for the application of intranasal stem cell therapy.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kai-Jie He
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Quan-Hong Ma
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. .,Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Mitchell SD, Sidiropoulos C. Therapeutic Applications of Botulinum Neurotoxin for Autonomic Symptoms in Parkinson's Disease: An Updated Review. Toxins (Basel) 2021; 13:226. [PMID: 33808714 PMCID: PMC8003355 DOI: 10.3390/toxins13030226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease is the most common age-related motoric neurodegenerative disease. In addition to the cardinal motor symptoms of tremor, rigidity, bradykinesia, and postural instability, there are numerous non-motor symptoms as well. Among the non-motor symptoms, autonomic nervous system dysfunction is common. Autonomic symptoms associated with Parkinson's disease include sialorrhea, hyperhidrosis, gastrointestinal dysfunction, and urinary dysfunction. Botulinum neurotoxin has been shown to potentially improve these autonomic symptoms. In this review, the varied uses of botulinum neurotoxin for autonomic dysfunction in Parkinson's disease are discussed. This review also includes discussion of some additional indications for the use of botulinum neurotoxin in Parkinson's disease, including pain.
Collapse
Affiliation(s)
- Steven D. Mitchell
- Department of Neurology, Michigan State University, East Lansing, MI 48824-7015, USA;
| | | |
Collapse
|
20
|
Gonçalves VC, Cuenca-Bermejo L, Fernandez-Villalba E, Martin-Balbuena S, da Silva Fernandes MJ, Scorza CA, Herrero MT. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist 2021; 28:530-542. [PMID: 33583239 DOI: 10.1177/1073858421990000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.
Collapse
Affiliation(s)
- Valeria C Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain.,Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Emiliano Fernandez-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Sebastian Martin-Balbuena
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Maria Jose da Silva Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria-Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| |
Collapse
|
21
|
Kimber TE. Approach to the patient with early Parkinson disease: diagnosis and management. Intern Med J 2021; 51:20-26. [DOI: 10.1111/imj.15148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas E. Kimber
- Neurology Unit Royal Adelaide Hospital Adelaide South Australia Australia
- University Department of Medicine, Faculty of Health and Medical Sciences University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
22
|
Gonzalez G, Hodoň J, Kazakova A, D'Acunto CW, Kaňovský P, Urban M, Strnad M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur J Med Chem 2021; 213:113168. [PMID: 33508480 DOI: 10.1016/j.ejmech.2021.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Novel triterpene derivatives were prepared and evaluated in salsolinol (SAL)- and glutamate (Glu)-induced models of neurodegeneration in neuron-like SH-SY5Y cells. Among the tested compounds, betulin triazole 4 bearing a tetraacetyl-β-d-glucose substituent showed a highly potent neuroprotective effect. Further studies revealed that removal of tetraacetyl-β-d-glucose part (free triazole derivative 10) resulted in strong neuroprotection in the SAL model at 1 μM, but this derivative suffered from cytotoxicity at higher concentrations. Both compounds modulated oxidative stress and caspase-3,7 activity, but 10 showed a superior effect comparable to the Ac-DEVD-CHO inhibitor. Interestingly, while both 4 and 10 outperformed the positive controls in blocking mitochondrial permeability transition pore opening, only 4 demonstrated potent restoration of the mitochondrial membrane potential (MMP) in the model. Derivatives 4 and 10 also showed neuroprotection in the Glu model, with 10 exhibiting the strongest oxidative stress reducing effect among the tested compounds, while the neuroprotective activity of 4 was probably due recovery of the MMP.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Cosimo Walter D'Acunto
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Milan Urban
- Department of Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic.
| |
Collapse
|
23
|
Mouchaileh N, Hughes AJ. Pharmacological management of Parkinson’s disease in older people. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2020. [DOI: 10.1002/jppr.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadia Mouchaileh
- Pharmacy Department Austin Health Heidelberg Australia
- Centre for Medicine Use and Safety Monash University Parkville Australia
| | | |
Collapse
|
24
|
Bitan G. The recent failure of the PROMESA clinical trial for multiple system atrophy raises the question-are polyphenols a viable therapeutic option against proteinopathies? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:719. [PMID: 32617339 PMCID: PMC7327354 DOI: 10.21037/atm.2020.01.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Luo S, Du L, Cui Y. Potential Therapeutic Applications and Developments of Exosomes in Parkinson’s Disease. Mol Pharm 2020; 17:1447-1457. [DOI: 10.1021/acs.molpharmaceut.0c00195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siqi Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
26
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
27
|
Gazerani P. Probiotics for Parkinson's Disease. Int J Mol Sci 2019; 20:E4121. [PMID: 31450864 PMCID: PMC6747430 DOI: 10.3390/ijms20174121] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurological disorder classically characterized by impairments in motor system function associated with loss of dopaminergic neurons in the substantia nigra. After almost 200 years since the first description of PD by James Parkinson, unraveling the complexity of PD continues to evolve. It is now recognized that an interplay between genetic and environmental factors influences a diverse range of cellular processes, reflecting on other clinical features including non-motor symptoms. This has consequently highlighted the extensive value of early clinical diagnosis to reduce difficulties of later stage management of PD. Advancement in understanding of PD has made remarkable progress in introducing new tools and strategies such as stem cell therapy and deep brain stimulation. A link between alterations in gut microbiota and PD has also opened a new line. Evidence exists of a bidirectional pathway between the gastrointestinal tract and the central nervous system. Probiotics, prebiotics and synbiotics are being examined that might influence gut-brain axis by altering gut microbiota composition, enteric nervous system, and CNS. This review provides status on use of probiotics for PD. Limitations and future directions will also be addressed to promote further research considering use of probiotics for PD.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine: Department of Health Science and Technology, Faculty of Medicine, Aalborg University,Frederik Bajers Vej 3B, 9220 Aalborg East, Denmark.
| |
Collapse
|
28
|
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder leading to loss of autonomy and a decline in quality of life. Qigong, a practice rooted in traditional Chinese medicine, has been positively reported on a variety of complaints of chronically ill patients and on gait imbalance in the elderly. PubMed and B-On databases were accessed during March 2018 to carry out an inventory of relevant scientific papers relating PD to Qigong. Fifteen articles were found and analyzed allowing us to highlight that: (1) in addition to medication, Qigong shows potential gains in PD management; (2) there is a stabilizing effect of motor symptoms and positive results in several frequent autonomy symptoms; (3) Qigong is highly accepted by patients, and is a cost-effective treatment that can be self-practiced, improving sleep quality, gait speed, functional mobility and quality of life, thus reducing the risk of falling; (4) Qigong improves muscle hardness, functional ability to walk, hand–eye coordination and balance. Despite the promising results, the limitations and the disparity of experimental designs of the included studies do not allow us to have a conclusive answer to the question whether Qigong benefits the management of PD or not.
Collapse
|