1
|
Balke J, Rolke B, Seibold VC. Reduction of temporal uncertainty facilitates stimulus-driven processes in spatial selection. Biol Psychol 2021; 159:108028. [PMID: 33476702 DOI: 10.1016/j.biopsycho.2021.108028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that the reduction of temporal uncertainty facilitates target selection in visual search. We investigated whether this beneficial effect is caused by an effect on stimulus-driven processes or on goal-driven processes in spatial selection. To discriminate between these processes, we employed a visual search task in which participants searched for a shape target while ignoring a color singleton distractor. As an index of stimulus-driven processes, we measured the N2pc evoked by the singleton distractor (ND). As indices of goal-driven processes, we measured the N2pc evoked by the target (NT) and the distractor positivity (PD) evoked by the singleton distractor, respectively. We observed that reducing temporal uncertainty modulated the amplitude of ND and the onset latency of the NT, but did not modulate the amplitude of the PD. These results are consistent with the view that a reduction of temporal uncertainty influences non-selective, stimulus-driven processes in spatial selection.
Collapse
|
2
|
Sehatpour P, Dondé C, Hoptman MJ, Kreither J, Adair D, Dias E, Vail B, Rohrig S, Silipo G, Lopez-Calderon J, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning. Neuroimage 2020; 223:117311. [PMID: 32889116 PMCID: PMC7778833 DOI: 10.1016/j.neuroimage.2020.117311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Clément Dondé
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, CHU Grenoble-Alpes, F-38000 Grenoble, France
| | - Matthew J Hoptman
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Centro de Psicología Aplicada, Facultad de Psicología, Universidad de Talca, Chile
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, NY, USA
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Blair Vail
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA
| | - Stephanie Rohrig
- Department of Psychology, Hofstra University, New Hempstead, NY, USA
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Antigona Martinez
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
4
|
Do musicians learn a fine sequential hand motor skill differently than non-musicians? PLoS One 2018; 13:e0207449. [PMID: 30462721 PMCID: PMC6248955 DOI: 10.1371/journal.pone.0207449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Do professional musicians learn a fine sequential hand motor skill more efficiently than non-musicians? Is this also the case when they perform motor imagery, which implies that they only mentally simulate these movements? Musicians and non-musicians performed a Go/NoGo discrete sequence production (DSP) task, which allows to separate sequence-specific from a-specific learning effects. In this task five stimuli, to be memorized during a preparation interval, signaled a response sequence. In a practice phase, different response sequences had to be either executed, imagined, or inhibited, which was indicated by different response cues. In a test phase, responses were required to familiar (previously executed, imagined, or inhibited) and unfamiliar sequences. In both phases, response times and response accuracy were measured while the electroencephalogram (EEG) was only registered during the practice phase to compare activity between motor imagery, motor execution, and motor inhibition for both groups. Results in the practice phase revealed that musicians learned the response sequences faster and more accurately than non-musicians although no difference in initiation time was found. EEG analyses revealed similar lateralized activity during learning a motor skill for both groups. Our results from the test phase showed better sequence-a-specific learning effects (i.e., faster response times and increased accuracy) for musicians than for non-musicians. Moreover, we revealed that non-musicians benefit more from physical execution while learning a required motor sequence, whereas sequence-specific learning effects due to learning with motor imagery were very similar for musicians and non-musicians.
Collapse
|
5
|
Klimesch W. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci 2018; 48:2431-2453. [PMID: 30281858 PMCID: PMC6668003 DOI: 10.1111/ejn.14192] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- Centre of Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
6
|
Van der Lubbe RHJ, Kuniecki M. Editorial Special Issue: Neuronus. Adv Cogn Psychol 2016; 12:150-153. [PMID: 28154611 PMCID: PMC5279853 DOI: 10.5709/acp-0194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This special issue of the 12th volume of Advances in Cognitive Psychology is
devoted to the Neuronus conference that took place in Kraków in 2015. In this
editorial letter, we will focus on a selection of the materials and some
follow-up research that was presented during this conference. We will also
briefly introduce the conference contributions that successfully passed an
external reviewing process.
Collapse
Affiliation(s)
| | - Michał Kuniecki
- Psychophysiological Laboratory of the Jagiellonian University,
Kraków, Poland
| |
Collapse
|