1
|
Truman A, Kutas M. Flexible Conceptual Representations. Cogn Sci 2024; 48:e13475. [PMID: 38923016 DOI: 10.1111/cogs.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
A view that has been gaining prevalence over the past decade is that the human conceptual system is malleable, dynamic, context-dependent, and task-dependent, that is, flexible. Within the flexible conceptual representation framework, conceptual representations are constructed ad hoc, forming a different, idiosyncratic instantiation upon each occurrence. In this review, we scrutinize the neurocognitive literature to better understand the nature of this flexibility. First, we identify some key characteristics of these representations. Next, we consider how these flexible representations are constructed by addressing some of the open questions in this framework: We review the age-old question of how to reconcile flexibility with the apparent need for shareable stable definitions to anchor meaning and come to mutual understanding, as well as some newer questions we find critical, namely, the nature of relations among flexible representations, the role of feature saliency in activation, and the viability of all-or-none feature activations. We suggest replacing the debate about the existence of a definitional stable core that is obligatorily activated with a question of the degree and probability of activation of the information constituting a conceptual representation. We rely on published works to suggest that (1) prior featural salience matters, (2) feature activation may be graded, and (3) Bayesian updating of prior information according to current demands offers a viable account of how flexible representations are constructed. This proposal provides a theoretical mechanism for incorporating a changing momentary context into a constructed representation, while still preserving some of the concept's constituent meaning.
Collapse
Affiliation(s)
- Alyssa Truman
- Department of Cognitive Science, University of California, San Diego
| | - Marta Kutas
- Department of Cognitive Science, University of California, San Diego
| |
Collapse
|
2
|
Trumpp NM, Ulrich M, Kiefer M. Experiential grounding of abstract concepts: Processing of abstract mental state concepts engages brain regions involved in mentalizing, automatic speech, and lip movements. Neuroimage 2024; 288:120539. [PMID: 38342187 DOI: 10.1016/j.neuroimage.2024.120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024] Open
Abstract
concepts like mental state concepts lack a physical referent, which can be directly perceived. Classical theories therefore claim that abstract concepts require amodal representations detached from experiential brain systems. However, grounded cognition approaches suggest an involvement of modal experiential brain regions in the processing of abstract concepts. In the present functional magnetic resonance imaging study, we investigated the relation of the processing of abstract mental state concepts to modal experiential brain systems in a fine-grained fashion. Participants performed lexical decisions on abstract mental state as well as on verbal association concepts as control category. Experiential brain systems related to the processing of mental states, generating verbal associations, automatic speech as well as hand and lip movements were determined by corresponding localizer tasks. Processing of abstract mental state concepts neuroanatomically overlapped with activity patterns associated with processing of mental states, generating verbal associations, automatic speech and lip movements. Hence, mental state concepts activate the mentalizing brain network, complemented by perceptual-motor brain regions involved in simulation of visual or action features associated with social interactions, linguistic brain regions as well as face-motor brain regions recruited for articulation. The present results provide compelling evidence for the rich grounding of abstract mental state concepts in experiential brain systems related to mentalizing, verbal communication and mouth action.
Collapse
Affiliation(s)
- Natalie M Trumpp
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany.
| | - Martin Ulrich
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| | - Markus Kiefer
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| |
Collapse
|
3
|
Dai Z, Song L, Luo C, Liu D, Li M, Han Z. Hemispheric lateralization of language processing: insights from network-based symptom mapping and patient subgroups. Cereb Cortex 2024; 34:bhad437. [PMID: 38031356 DOI: 10.1093/cercor/bhad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres. Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
Collapse
Affiliation(s)
- Zhiyun Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Chongjing Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Kuhnke P, Kiefer M, Hartwigsen G. Conceptual representations in the default, control and attention networks are task-dependent and cross-modal. BRAIN AND LANGUAGE 2023; 244:105313. [PMID: 37595340 DOI: 10.1016/j.bandl.2023.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Conceptual knowledge is central to human cognition. Neuroimaging studies suggest that conceptual processing involves modality-specific and multimodal brain regions in a task-dependent fashion. However, it remains unclear (1) to what extent conceptual feature representations are also modulated by the task, (2) whether conceptual representations in multimodal regions are indeed cross-modal, and (3) how the conceptual system relates to the large-scale functional brain networks. To address these issues, we conducted multivariate pattern analyses on fMRI data. 40 participants performed three tasks-lexical decision, sound judgment, and action judgment-on written words. We found that (1) conceptual feature representations are strongly modulated by the task, (2) conceptual representations in several multimodal regions are cross-modal, and (3) conceptual feature retrieval involves the default, frontoparietal control, and dorsal attention networks. Conceptual representations in these large-scale networks are task-dependent and cross-modal. Our findings support theories that assume conceptual processing to rely on a flexible, multi-level architecture.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
5
|
O’Shea H. Mapping relational links between motor imagery, action observation, action-related language, and action execution. Front Hum Neurosci 2022; 16:984053. [DOI: 10.3389/fnhum.2022.984053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Actions can be physically executed, observed, imagined, or simply thought about. Unifying mental processes, such as simulation, emulation, or predictive processing, are thought to underlie different action types, whether they are mental states, as in the case of motor imagery and action observation, or involve physical execution. While overlapping brain activity is typically observed across different actions which indicates commonalities, research interest is also concerned with investigating the distinct functional components of these action types. Unfortunately, untangling subtleties associated with the neurocognitive bases of different action types is a complex endeavour due to the high dimensional nature of their neural substrate (e.g., any action process is likely to activate multiple brain regions thereby having multiple dimensions to consider when comparing across them). This has impeded progress in action-related theorising and application. The present study addresses this challenge by using the novel approach of multidimensional modeling to reduce the high-dimensional neural substrate of four action-related behaviours (motor imagery, action observation, action-related language, and action execution), find the least number of dimensions that distinguish or relate these action types, and characterise their neurocognitive relational links. Data for the model comprised brain activations for action types from whole-brain analyses reported in 53 published articles. Eighty-two dimensions (i.e., 82 brain regions) for the action types were reduced to a three-dimensional model, that mapped action types in ordination space where the greater the distance between the action types, the more dissimilar they are. A series of one-way ANOVAs and post-hoc comparisons performed on the mean coordinates for each action type in the model showed that across all action types, action execution and concurrent action observation (AO)-motor imagery (MI) were most neurocognitively similar, while action execution and AO were most dissimilar. Most action types were similar on at least one neurocognitive dimension, the exception to this being action-related language. The import of the findings are discussed in terms of future research and implications for application.
Collapse
|
6
|
Li X, Luo D, Wang C, Xia Y, Jin H. Motor features of abstract verbs determine their representations in the motor system. Front Psychol 2022; 13:957426. [PMID: 36110272 PMCID: PMC9469731 DOI: 10.3389/fpsyg.2022.957426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Embodied cognition theory posits that concept representations inherently rely on sensorimotor experiences that accompany their acquisitions. This is well established through concrete concepts. However, it is debatable whether representations of abstract concepts are based on sensorimotor representations. This study investigated the causal role of associated motor experiences that accompany concept acquisition in the involvement of the motor system in the abstract verb processing. Through two experiments, we examined the action–sentence compatibility effect, in the test phase after an increase in motor features during the learning phase for abstract verbs with low motor features (Experiment 1) or novel words with no conceptual features at all (Experiment 2). After associated motor experiences were added in the word learning phase, action–sentence compatibility effect was found in the semantic processing tasks during the test phase for abstract verbs (Experiment 1a) and novel words (Experiment 2). This was lacking in the word font color judgment task requiring no semantic processing (Experiment 1b). Coupled with our previous study, these findings suggest that motor features formed during word learning could causally affect embodiment in the motor system for abstract verbs, and reactivation of motor experiences in abstract verb processing depends on a given task’s demands. Our study supports the view that conceptual representations, even abstract concepts, can be grounded in sensorimotor experiences.
Collapse
Affiliation(s)
- Xiang Li
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Dan Luo
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Faculty of Education, Henan Normal University, Xinxiang, China
| | - Chao Wang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yaoyuan Xia
- Department of Physical Education, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Hua Jin
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- *Correspondence: Hua Jin,
| |
Collapse
|
7
|
Giacobbe C, Raimo S, Cropano M, Santangelo G. Neural correlates of embodied action language processing: a systematic review and meta-analytic study. Brain Imaging Behav 2022; 16:2353-2374. [PMID: 35754077 DOI: 10.1007/s11682-022-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
The neural correlates of action language processing are still debated within embodied cognition research and little is known about the flexible involvement of modality-specific pre-motor system and multimodal high-level temporo-parietal regions as a function of explicit and implicit tasks. A systematic review and the Activation likelihood estimation (ALE) meta-analyses on functional neuroimaging studies were performed to identify neural correlates of action language processing activated during explicit and implicit tasks. The contrast ALE meta-analysis revealed activation of modality-specific premotor area and inferior frontal areas during explicit action language tasks while a greater activation of posterior temporo-occipital areas emerged for implicit tasks. The conjunction analysis revealed overlap in the temporo-parietal multimodal high-level regions for both types of tasks. Functional specialization of the middle temporal gyrus was found where the more posterior-occipital part resulted activated during implicit action language tasks whereas the antero-lateral part was involved in explicit tasks. Our findings were discussed within a conceptual flexibility perspective about the involvement of both the modality-specific and multimodal brain system during action language processing depending on different types of tasks.
Collapse
Affiliation(s)
- Chiara Giacobbe
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Simona Raimo
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Maria Cropano
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Viale Ellittico, 31, 81100, Caserta, Italy
| |
Collapse
|
8
|
Kiefer M, Pielke L, Trumpp NM. Differential temporo-spatial pattern of electrical brain activity during the processing of abstract concepts related to mental states and verbal associations. Neuroimage 2022; 252:119036. [PMID: 35219860 DOI: 10.1016/j.neuroimage.2022.119036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Refined grounded cognition accounts propose that abstract concepts might be grounded in brain circuits involved in mentalizing. In the present event-related potential (ERP) study, we compared the time course of neural processing in response to semantically predefined abstract mental states and verbal association concepts during a lexical decision task. In addition to scalp ERPs, source estimates of underlying volume brain activity were determined to reveal spatio-temporal clusters of greater electrical brain activity to abstract mental state vs. verbal association concepts, and vice versa. Source estimates suggested early (onset 194 ms), but short-lived enhanced activity (offset 210 ms) to verbal association concepts in left occipital regions. Increased occipital activity might reflect retrieval of visual word form or access to visual conceptual features of associated words. Increased estimated source activity to mental state concepts was obtained in visuo-motor (superior parietal, pre- and postcentral areas) and mentalizing networks (lateral and medial prefrontal areas, insula, precuneus, temporo-parietal junction) with an onset of 212 ms, which extended to later time windows. The time course data indicated two processing phases: An initial conceptual access phase, in which linguistic and modal brain circuits rapidly process features depending on their relevance, and a later conceptual elaboration phase, in which elaborative processing within feature-specific networks further refines the concept. This study confirms the proposal that abstract concepts are based on representations in distinct neural circuits depending on their semantic feature content. The present research also highlights the importance of investigating sets of abstract concepts with a defined semantic content.
Collapse
Affiliation(s)
- Markus Kiefer
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany.
| | - Lena Pielke
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| | - Natalie M Trumpp
- Department of Psychiatry, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, Ulm D-89075, Germany
| |
Collapse
|
9
|
Datta S, Boulgouris NV. Recognition of grammatical class of imagined words from EEG signals using convolutional neural network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
10
|
Kuhnke P, Kiefer M, Hartwigsen G. Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cereb Cortex 2021; 31:3475-3493. [PMID: 33677479 PMCID: PMC8196308 DOI: 10.1093/cercor/bhab026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptual knowledge is central to cognition. Previous neuroimaging research indicates that conceptual processing involves both modality-specific perceptual-motor areas and multimodal convergence zones. For example, our previous functional magnetic resonance imaging (fMRI) study revealed that both modality-specific and multimodal regions respond to sound and action features of concepts in a task-dependent fashion (Kuhnke P, Kiefer M, Hartwigsen G. 2020b. Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex. 30:3938–3959.). However, it remains unknown whether and how modality-specific and multimodal areas interact during conceptual tasks. Here, we asked 1) whether multimodal and modality-specific areas are functionally coupled during conceptual processing, 2) whether their coupling depends on the task, 3) whether information flows top-down, bottom-up or both, and 4) whether their coupling is behaviorally relevant. We combined psychophysiological interaction analyses with dynamic causal modeling on the fMRI data of our previous study. We found that functional coupling between multimodal and modality-specific areas strongly depended on the task, involved both top-down and bottom-up information flow, and predicted conceptually guided behavior. Notably, we also found coupling between different modality-specific areas and between different multimodal areas. These results suggest that functional coupling in the conceptual system is extensive, reciprocal, task-dependent, and behaviorally relevant. We propose a new model of the conceptual system that incorporates task-dependent functional interactions between modality-specific and multimodal areas.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Markus Kiefer
- Department of Psychiatry, Ulm University, Ulm 89081, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
11
|
Wypych A, Wierzchowska M, Burduk P, Zawada E, Nadolska K, Serafin Z. Cortical presentation of language functions in patients after total laryngectomy: a fMRI study. Neuroradiology 2020; 62:843-849. [PMID: 32253455 PMCID: PMC7311494 DOI: 10.1007/s00234-020-02407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2019] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Purpose The aim of this study is to use functional magnetic resonance (fMRI) to analyse the cortical presentation of selected language functions in patients after a total laryngectomy. Methods Eighteen patients after total laryngectomy treated with electrolarynx speech and 18 volunteers were included. The mean number of patients’ post-operative speech rehabilitation sessions was five (range of 3–8 sessions). Four paradigms were used, including noun generation, pseudoword reading, reading phrases with pseudowords, and nonliteral sign reproduction. Results In noun, the most significant difference between the groups was the stronger activation of both lingual gyri in the volunteers. Pseudoword reading resulted in stronger activations in patients than in volunteers in the lingual gyri, the right cerebellum, the right Broca’s area, and the right parietal operculum. Reading phrases with pseudowords involved different parts of the Brodmann area 40. During nonliteral sign reproduction, there was a stronger activation of the left Broca’s area in volunteers and a stronger activation of the left premotor cortex in patients. Conclusion This study provides evidence of altered cortical activation in response to language tasks in patients after a laryngectomy compared with healthy volunteers, which may be considered brain plasticity in response to a laryngectomy.
Collapse
Affiliation(s)
- Aleksandra Wypych
- The Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Wierzchowska
- Department of Otolaryngology, Oncology and Oral and Maxillofacial Surgery, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Paweł Burduk
- Department of Otolaryngology, Oncology and Oral and Maxillofacial Surgery, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Elżbieta Zawada
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
- Department of Geriatrics, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Katarzyna Nadolska
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland.
| |
Collapse
|