1
|
Huo J, Feng L, Cheng Y, Miao YL, Liu W, Hou MM, Zhang HF, Yang CH, Li Y, Zhang MS, Fan YY. Delayed simvastatin treatment improves neurological recovery after cryogenic traumatic brain injury through downregulation of ELOVL1 by inhibiting mTOR signaling. Brain Res Bull 2024; 217:111072. [PMID: 39243948 DOI: 10.1016/j.brainresbull.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5 mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Jing Huo
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Lin Feng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Wen Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Yang X, Lu X, Wang L, Bai L, Yao R, Jia Z, Ma Y, Chen Y, Hao H, Wu X, Wang Z, Wang Y. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253:127324. [PMID: 37838116 DOI: 10.1016/j.ijbiomac.2023.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Stearic acid (C18:0, SA) is a saturated long-chain fatty acid (LCFA) that has a prominent function in lactating dairy cows. It is obtained primarily from the diet and is stored in the form of triacylglycerol (TAG) molecules. The transmembrane glycoprotein cluster of differentiation 36 (CD36) is also known as fatty acid translocase, but whether SA promotes lipid synthesis through CD36 and FAK/mTORC1 signaling is unknown. In this study, we examined the function and mechanism of CD36-mediated SA-induced lipid synthesis in bovine mammary epithelial cells (BMECs). SA-enriched supplements enhanced lipid synthesis and the FAK/mTORC1 pathway in BMECs. SA-induced lipid synthesis, FAK/mTORC1 signaling, and the expression of lipogenic genes were impaired by anti-CD36 and the CD36-specific inhibitor SSO, whereas overexpression of CD36 effected the opposite results. Inhibition of FAK/mTORC1 by TAE226/Rapamycin attenuated SA-induced TAG synthesis, inactivated FAK/mTORC1 signaling, and downregulated the lipogenic genes PPARG, CD36, ACSL1, SCD, GPAT4, LIPIN1, and DGAT1 at the mRNA and protein levels in BMECs. By coimmunoprecipitation and yeast two-hybrid screen, CD36 interacted directly with Fyn but not Lyn, and Fyn bound directly to FAK; FAK also interacted directly with TSC2. CD36 linked FAK through Fyn, and FAK coupled mTORC1 through TSC2 to form the CD36/Fyn/FAK/mTORC1 signaling axis. Thus, stearic acid promotes lipogenesis through CD36 and Fyn/FAK/mTORC1 signaling in BMECs. Our findings provide novel insights into the underlying molecular mechanisms by which LCFA supplements promote lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Xiaoru Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaotong Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
3
|
Go YM, Zhang J, Fernandes J, Litwin C, Chen R, Wensel TG, Jones DP, Cai J, Chen Y. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. FASEB J 2020; 34:12502-12520. [PMID: 32721041 DOI: 10.1096/fj.202000612r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
The retinal pigment epithelium (RPE) is a particularly vulnerable tissue to age-dependent degeneration. Over the life span, the RPE develops an expanded endo-lysosomal compartment to maintain the high efficiency of phagocytosis and degradation of photoreceptor outer segments (POS) necessary for photoreceptor survival. As the assembly and activation of the mechanistic target of rapamycin complex 1 (mTORC1) occur on the lysosome surface, increased lysosome mass with aging leads to higher mTORC1 activity. The functional consequences of hyperactive mTORC1 in the RPE are unclear. In the current study, we used integrated high-resolution metabolomic and genomic approaches to examine mice with RPE-specific deletion of the tuberous sclerosis 1 (Tsc1) gene which encodes an upstream suppressor of mTORC1. Our data show that RPE cells with constitutively high mTORC1 activity were reprogramed to be hyperactive in glucose and lipid metabolism. Lipolysis was suppressed, mitochondrial carnitine shuttle was inhibited, while genes involved in fatty acid (FA) biosynthesis were upregulated. The metabolic changes occurred prior to structural changes of RPE and retinal degeneration. These findings have revealed cellular events and intrinsic mechanisms that contribute to lipid accumulation in the RPE cells during aging and age-related degeneration.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher Litwin
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rui Chen
- Department of Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Theodore G Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Mohan MS, O'Callaghan TF, Kelly P, Hogan SA. Milk fat: opportunities, challenges and innovation. Crit Rev Food Sci Nutr 2020; 61:2411-2443. [PMID: 32649226 DOI: 10.1080/10408398.2020.1778631] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk fat is a high-value milk component that is processed mainly as butter, cheese, cream and whole milk powder. It is projected that approximately 35 million tonnes of milk fat will be produced globally by 2025. This surplus, enhances the need for diversification of milk fat products and the milk pool in general. Infant milk formula producers, for instance, have incorporated enzyme modified ("humanised") milk fat and fat globule phospholipids to better mimic human milk fat structures. Minor components like mono- and di-glycerides from milk fat are increasingly utilized as emulsifiers, replacing palm esters in premium-priced food products. This review examines the chemistry of milk fat and the technologies employed for its modification, fractionation and enrichment. Emerging processing technologies such as ultrasound, high pressure processing, supercritical fluid extraction and fractionation, can be employed to improve the nutritional and functional attributes of milk fat. The potential of recent developments in biological intervention, through dietary manipulation of milk fatty acid profiles in cattle also offers significant promise. Finally, this review provides evidence to help redress the imbalance in reported associations between milk fat consumption and human health, and elucidates the health benefits associated with consumption of milk fat and dairy products.
Collapse
Affiliation(s)
- Maneesha S Mohan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Phil Kelly
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Sean A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
5
|
Ardisson Korat AV, Malik VS, Furtado JD, Sacks F, Rosner B, Rexrode KM, Willett WC, Mozaffarian D, Hu FB, Sun Q. Circulating Very-Long-Chain SFA Concentrations Are Inversely Associated with Incident Type 2 Diabetes in US Men and Women. J Nutr 2020; 150:340-349. [PMID: 31618417 PMCID: PMC7308624 DOI: 10.1093/jn/nxz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Very-long-chain SFAs (VLCSFAs), such as arachidic acid (20:0), behenic acid (22:0), and lignoceric acid (24:0), have demonstrated inverse associations with cardiometabolic conditions, although more evidence is needed to characterize their relation with risk of type 2 diabetes (T2D). In addition, little is known regarding their potential dietary and lifestyle predictors. OBJECTIVE We aimed to examine the association of plasma and erythrocyte concentrations of VLCSFAs with incident T2D risk. METHODS We used existing measurements of fatty acid concentrations in plasma and erythrocytes among 2854 and 2831 participants in the Nurses' Health Study (NHS) and Health Professionals Follow-Up Study (HPFS), respectively. VLCSFAs were measured using GLC, and individual fatty acid concentrations were expressed as a percentage of total fatty acids. Incident T2D cases were identified by self-reports and confirmed by a validated supplementary questionnaire. Cox proportional hazards regression was used to evaluate the association between VLCSFAs and T2D, adjusting for demographic, lifestyle, and dietary variables. RESULTS During 39,941 person-years of follow-up, we documented 243 cases of T2D. Intakes of peanuts, peanut butter, vegetable fat, dairy fat, and palmitic/stearic (16:0-18:0) fatty acids were significantly, albeit weakly, correlated with plasma and erythrocyte VLCSFA concentrations (|rs| ≤ 0.19). Comparing the highest with the lowest quartiles of plasma concentrations, pooled HRs (95% CIs) were 0.51 (0.35, 0.75) for arachidic acid, 0.43 (0.28, 0.64) for behenic acid, 0.40 (0.27, 0.61) for lignoceric acid, and 0.41 (0.27, 0.61) for the sum of VLCSFAs, after multivariate adjustments for demographic, lifestyle, and dietary factors. For erythrocyte VLCSFAs, only arachidic acid and behenic acid concentrations were inversely associated with T2D risk. CONCLUSIONS Our findings suggest that, in US men and women, higher plasma concentrations of VLCSFAs are associated with lower risk of T2D. More research is needed to understand the mechanistic pathways underlying these associations.
Collapse
Affiliation(s)
- Andres V Ardisson Korat
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Vasanti S Malik
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Frank Sacks
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Genetics and Complex Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dariush Mozaffarian
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
7
|
Guo Z, Cheng X, Feng X, Zhao K, Zhang M, Yao R, Chen Y, Wang Y, Hao H, Wang Z. The mTORC1/4EBP1/PPARγ Axis Mediates Insulin-Induced Lipogenesis by Regulating Lipogenic Gene Expression in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6007-6018. [PMID: 31060359 DOI: 10.1021/acs.jafc.9b01411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4EBP1 is a chief downstream factor of mTORC1, and PPARγ is a key lipogenesis-related transcription factor. mTORC1 and PPARγ are associated with lipid metabolism. However, it is unknown which effector protein connects mTORC1 and PPARγ. This study investigated the interaction between 4EBP1 with PPARγ as part of the underlying mechanism by which insulin-induced lipid synthesis and secretion are regulated by mTORC1 in primary bovine mammary epithelial cells (pBMECs). Rapamycin, a specific inhibitor of mTORC1, downregulated 4EBP1 phosphorylation and the expression of PPARγ and the following lipogenic genes: lipin 1, DGAT1, ACC, and FAS. Rapamycin also decreased the levels of intracellular triacylglycerol (TAG); 10 types of fatty acid; and the accumulation of TAG, palmitic acid (PA), and stearic acid (SA) in the cell culture medium. Inactivation of mTORC1 by shRaptor or shRheb attenuated the synthesis and secretion of TAG and PA. In contrast, activation of mTORC1 by Rheb overexpression promoted 4EBP1 phosphorylation and PPARγ expression and upregulated the mRNA and protein levels of lipin 1, DGAT1, ACC, and FAS, whereas the levels of intracellular and extracellular TAG, PA, and SA also rose. Further, 4EBP1 interacted directly with PPARγ. Inactivation of mTORC1 by shRaptor prevented the nuclear location of PPARγ. These results demonstrate that mTORC1 regulates lipid synthesis and secretion by inducing the expression of lipin 1, DGAT1, ACC, and FAS, which is likely mediated by the 4EBP1/PPARγ axis. This finding constitutes a novel mechanism by which lipid synthesis and secretion are regulated in pBMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Xiaoou Cheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Keyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Meng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
- School of Life Sciences , Jining Normal University , Jining 012000 , China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences , Inner Mongolia University , Hohhot 010021 , China
| |
Collapse
|
8
|
mTORC2 Regulates Lipogenic Gene Expression through PPAR γ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5196028. [PMID: 31223619 PMCID: PMC6541957 DOI: 10.1155/2019/5196028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The mechanistic target of rapamycin complex 2 (mTORC2) primarily functions as an effector of insulin/PI3K signaling to regulate cell proliferation and is associated with cell metabolism. However, the function of mTORC2 in lipid metabolism is not well understood. In the present study, mTORC2 was inactivated by the ATP-competitive mTOR inhibitor AZD8055 or shRNA targeting RICTOR in primary bovine mammary epithelial cells (pBMECs). MTT assay was performed to examine the effect of AZD8055 on cell proliferation. ELISA assay and GC-MS analysis were used to determine the content of lipid. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. We found that cell proliferation, mTORC2 activation, and lipid secretion were inhibited by AZD8055. RICTOR was knocked down and mTORC2 activation was specifically attenuated by the shRNA. Compared to control cells, the expression of the transcription factor gene PPARG and the lipogenic genes LPIN1, DGAT1, ACACA, and FASN was downregulated in RICTOR silencing cells. As a result, the content of intracellular triacylglycerol (TAG), palmitic acid (PA), docosahexaenoic acid (DHA), and other 16 types of fatty acid was decreased in the treated cells; the accumulation of TAG, PA, and DHA in cell culture medium was also reduced. Overall, mTORC2 plays a critical role in regulating lipogenic gene expression, lipid synthesis, and secretion in pBMECs, and this process probably is through PPARγ. This finding provides a model by which lipogenesis is regulated in pBMECs.
Collapse
|
9
|
Zhu C, Song W, Tao Z, Liu H, Xu W, Zhang S, Li H. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One 2017; 12:e0180403. [PMID: 28771592 PMCID: PMC5542427 DOI: 10.1371/journal.pone.0180403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.
Collapse
Affiliation(s)
- Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Zhiyun Tao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Hongxiang Liu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Wenjuan Xu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Shuangjie Zhang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
- * E-mail: ,
| |
Collapse
|