1
|
Shi M, Li Z, Hu S, Zhang P, Meng S, Huang L, Miao Z, Zhang J. Microbiome-proteome analysis of gastrointestinal microbiota and longissimus thoracis muscle proteins in cattle with high and low grades of marbling. BMC Vet Res 2024; 20:563. [PMID: 39696486 DOI: 10.1186/s12917-024-04417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Marbling is a key indicator of the meat quality of ruminants. Gastrointestinal microbiota may regulate the formation of marbling by influencing the nutritional metabolism of animals. This study analyzed the composition and functional differences of microbiota in the rumen and cecum, the differences in volatile fatty acids (VFAs) content in the longissimus thoracis muscle, and the differences in protein abundance in the longissimus thoracis muscle of ruminants with different marbling grades through microbiome-proteome analysis. The results showed that the diversity of gastrointestinal microbiota in high-marbling ruminants was significantly higher than that in low-marbling ruminants. The relative abundance of Firmicutes and Akkermansia in the gastrointestinal of high-marbling ruminants was higher than that in low-marbling ruminants, while the relative abundance of Bacteroidetes and Prevotella was lower. In addition, PICRUST2 functional prediction results of the microbiota revealed that the gastrointestinal microbiota of high-marbling ruminants was mainly involved in the biosynthesis pathways of fat and lipids. The metabolomics results showed that the content of VFAs (acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, and hexanoic acid) in the rumen of high-marbling ruminants was significantly higher than that in low-marbling ruminants. The proteome analysis results indicated that the differential proteins in the longissimus thoracis muscle of high-marbling ruminants were mainly involved in lipid transport and metabolism compared to low-marbling ruminants. In summary, the differences in the composition and function of the gastrointestinal microbiota led to higher levels of VFAs in the gastrointestinal tract of high-marbling ruminants, which provides the basis for lipid/fat synthesis. The proteome results of the longissimus thoracis muscle support the view that high-marbling ruminants have richer lipid transport and metabolic functions in their muscle.
Collapse
Affiliation(s)
- Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Shuaishuai Hu
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Pei Zhang
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Shuaitao Meng
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Luyao Huang
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Foggi G, Terranova M, Daghio M, Amelchanka SL, Conte G, Ineichen S, Agnolucci M, Viti C, Mantino A, Buccioni A, Kreuzer M, Mele M. Evaluation of ruminal methane and ammonia formation and microbiota composition as affected by supplements based on mixtures of tannins and essential oils using Rusitec. J Anim Sci Biotechnol 2024; 15:48. [PMID: 38561832 PMCID: PMC10986001 DOI: 10.1186/s40104-024-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Dietary supplements based on tannin extracts or essential oil compounds (EOC) have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry. A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation. Among these, Q-2 (named after quebracho extract and EOC blend 2, composed of carvacrol, thymol, and eugenol) and C-10 (chestnut extract and EOC blend 10, consisting of oregano and thyme essential oils and limonene) have been investigated in detail in the present study with the semi-continuous rumen simulation technique (Rusitec) in three independent runs. For this purpose, Q-2 and C-10, dosed according to the previous study, were compared with a non-supplemented diet (negative control, NC) and with one supplemented with the commercial EOC-based Agolin® Ruminant (positive control, PC). RESULTS From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH, ammonia, protozoa count, and gas composition. Feed residues were collected for the determination of ruminal degradability. On d 10, samples of incubation liquid were also characterised for bacterial, archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons. Regardless of the duration of the fermentation period, Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia (-37% by Q-2, -34% by PC) or methane formation (-12% by C-10, -12% by PC). The PC was also responsible for lower feed degradability and bacterial and fungal richness, whereas Q-2 and C-10 effects, particularly on microbiome diversities, were limited compared to NC. CONCLUSIONS All additives showed the potential to mitigate methane or ammonia formation, or both, in vitro over a period of 10 d. However, several differences occurred between PC and Q-2/C-10, indicating different mechanisms of action. The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects. Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties, their mechanisms of action remain mostly to be elucidated.
Collapse
Affiliation(s)
- Giulia Foggi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy.
| | | | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | | | - Giuseppe Conte
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Simon Ineichen
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | - Alberto Mantino
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland
| | - Marcello Mele
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
3
|
Kim M, Park T, Park C, Baek YC, Cho A, Lee HG, Kim E, Bok EY, Jung YH, Hur TY, Do YJ. Impact of rumen cannulation surgery on rumen microbiota composition in Hanwoo steers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:353-365. [PMID: 38628677 PMCID: PMC11016741 DOI: 10.5187/jast.2024.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024]
Abstract
Rumen cannulation is a surgical technique used to collect rumen contents from ruminants. However, rumen cannulation surgery may potentially impact the composition of the rumen microbiota. This study aimed to examine the longitudinal alterations in the rumen microbiota composition of Hanwoo steers after cannulation surgery. In this study, eight Hanwoo steers were used; four steers underwent rumen cannulation surgery (cannulation group), while the remaining four were left intact (control group). Rumen samples were collected from all eight steers using the stomach tubing method on the day before surgery (day 0) and on postoperative days 1, 4, 7, 10, 14, 17, 21, 24, and 28, resulting in 80 samples (10 timepoints × 8 animals). The microbiota of all 80 samples were analyzed using 16S rRNA gene amplicon sequencing with Quantitative Insights into Microbial Ecology version 2 (QIIME2). There were no significant differences (p > 0.05) in all major phyla and most major genera representing at least 0.5% of total sequences across all 80 samples between the control and cannulation groups on the preoperative and postoperative days. However, while the alpha diversity indices did not differ (p > 0.05) between the two groups on the preoperative day, they significantly differed (p < 0.05) between the two groups on the postoperative days. Further, the overall microbial distribution based on both unweighted and weighted principal coordinate analysis plots significantly differed (p < 0.05) between the two groups on both the preoperative and postoperative days. Orthogonal polynomial contrasts indicated that major genera and microbial diversity in the cannulation group decreased following surgery but returned to their initial states by postoperative day 28. In conclusion, this study demonstrates that rumen cannulation surgery affects some major taxa and microbial diversity, suggesting that the rumen cannulation method can alter the composition of rumen microbiota in Hanwoo steers.
Collapse
Affiliation(s)
- Minseok Kim
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Tansol Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Cheolju Park
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Youl-Chang Baek
- Animal Nutrition & Physiology
Division, National Institute of Animal Science, Wanju 55365,
Korea
| | - Ara Cho
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Han Gyu Lee
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Eunju Kim
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Young-Hun Jung
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Tai-Young Hur
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| | - Yoon Jung Do
- Division of Animal Diseases &
Health, National Institute of Animal Science, Wanju 55365,
Korea
| |
Collapse
|
4
|
Dixit S, Kumar S, Sharma R, Banakar PS, Singh M, Keshri A, Tyagi AK. Rumen multi-omics addressing diet-host-microbiome interplay in farm animals: a review. Anim Biotechnol 2023; 34:3187-3205. [PMID: 35713100 DOI: 10.1080/10495398.2022.2078979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Continuous improvement in the living standards of developing countries, calls for an urgent need of high quality meat and dairy products. The farm animals have a micro-ecosystem in gastro-intestinal tract, comprising of a wide variety of flora and fauna which converts roughages and agricultural byproducts as well as nutrient rich concentrate sources into the useful products such as volatile fatty acids and microbial crude proteins. The microbial diversity changes according to composition of the feed, host species/breed and host's individual genetic makeup. From culture methods to next-generation sequencing technologies, the knowledge has emerged a lot to know-how of microbial world viz. their identification, enzymatic activities and metabolites which are the keys of ruminant's successful existence. The structural composition of ruminal community revealed through metagenomics can be elaborated by metatranscriptomics and metabolomics through deciphering their functional role in metabolism and their responses to the external and internal stimuli. These highly sophisticated analytical tools have made possible to correlate the differences in the feed efficiency, nutrients utilization and methane emissions to their rumen microbiome. The comprehensively understood rumen microbiome will enhance the knowledge in the fields of animal nutrition, biotechnology and climatology through deciphering the significance of each and every domain of residing microbial entity. The present review undertakes the recent investigations regarding rumen multi-omics viz. taxonomic and functional potential of microbial populations, host-diet-microbiome interactions and correlation with metabolic dynamics.
Collapse
Affiliation(s)
- Sonam Dixit
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Sachin Kumar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Ritu Sharma
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - P S Banakar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Manvendra Singh
- Krishi Vigyan Kendra, Banda University of Agriculture and Technology, Banda, India
| | - Anchal Keshri
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - A K Tyagi
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
- Animal Nutrition and Physiology, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
5
|
Lee S, Kim J, Baek Y, Seong P, Song J, Kim M, Kang S. Effects of different feeding systems on ruminal fermentation, digestibility, methane emissions, and microbiota of Hanwoo steers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1270-1289. [PMID: 38616869 PMCID: PMC11007303 DOI: 10.5187/jast.2023.e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 04/16/2024]
Abstract
This study evaluates how different feeding systems impact ruminal fermentation, methane production, and microbiota of Hanwoo steers native to Korea. In a replicated 2 × 2 crossover design over 29 days per period, eight Hanwoo steers (507.1 ± 67.4 kg) were fed twice daily using a separate feeding (SF) system comprising separate concentrate mix and forage or total mixed rations (TMR) in a 15:85 ratio. The TMR-feeding group exhibited a considerable neutral detergent fiber digestibility increase than the SF group. However, ruminal fermentation parameters and methane production did not differ between two feeding strategies. In addition, TMR-fed steers expressed elevated Prevotellaceae family, Christensenellaceae R-7 group, and an unidentified Veillonellaceae family genus abundance in their rumen, whereas SF-fed steers were rich in the Rikenellaceae RC9 gut group, Erysipelotrichaceae UCG-004, and Succinivibrio. Through linear regression modeling, positive correlations were observed between the Shannon Diversity Index and the SF group's dry matter intake and methane production. Although feeding systems do not affect methane production, they can alter ruminal microbes. These results may guide future feeding system investigations or ruminal microbiota manipulations as a methane-mitigation practice examining different feed ingredients.
Collapse
Affiliation(s)
- Seul Lee
- Animal Nutrition & Physiology
Division, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Jungeun Kim
- Animal Nutrition & Physiology
Division, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Youlchang Baek
- Animal Nutrition & Physiology
Division, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Pilnam Seong
- Animal Nutrition & Physiology
Division, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | | | - Minseok Kim
- Division of Animal Science, College of
Agriculture and Life Sciences, Chonnam National University,
Gwangju 61186, Korea
| | - Seungha Kang
- The University of Queensland Frazer
Institute, Faculty of Medicine, University of Queensland,
Woolloongabba, Queensland 4072, Australia
| |
Collapse
|
6
|
Yang J, Chen R, Peng Y, Chai J, Li Y, Deng F. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol 2023; 14:1284603. [PMID: 37876779 PMCID: PMC10593451 DOI: 10.3389/fmicb.2023.1284603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The gastrointestinal microbiota of swine harbors an essential but often overlooked component: the gut archaea. These enigmatic microorganisms play pivotal roles in swine growth, health, and yield quality. Recent insights indicate that the diversity of gut archaea is influenced by various factors including breed, age, and diet. Such factors orchestrate the metabolic interactions within the porcine gastrointestinal environment. Through symbiotic relationships with bacteria, these archaea modulate the host's energy metabolism and digestive processes. Contemporary research elucidates a strong association between the abundance of these archaea and economically significant traits in swine. This review elucidates the multifaceted roles of gut archaea in swine and underscores the imperative for strategic interventions to modulate their population and functionality. By exploring the probiotic potential of gut archaea, we envisage novel avenues to enhance swine growth, health, and product excellence. By spotlighting this crucial, yet under-investigated, facet of the swine gut microbiome, we aim to galvanize further scientific exploration into harnessing their myriad benefits.
Collapse
Affiliation(s)
- Jianbo Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Routing Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
7
|
Kaur H, Kaur G, Gupta T, Mittal D, Ali SA. Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production. BIOLOGY 2023; 12:1200. [PMID: 37759599 PMCID: PMC10525894 DOI: 10.3390/biology12091200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Collapse
Affiliation(s)
- Harpreet Kaur
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - Taruna Gupta
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Deepti Mittal
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Calvigioni M, Panattoni A, Biagini F, Donati L, Mazzantini D, Massimino M, Daddi C, Celandroni F, Vozzi G, Ghelardi E. Development of an In Vitro Model of the Gut Microbiota Enriched in Mucus-Adhering Bacteria. Microbiol Spectr 2023; 11:e0033623. [PMID: 37289064 PMCID: PMC10433972 DOI: 10.1128/spectrum.00336-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Culturing the gut microbiota in in vitro models that mimic the intestinal environment is increasingly becoming a promising alternative approach to study microbial dynamics and the effect of perturbations on the gut community. Since the mucus-associated microbial populations in the human intestine differ in composition and functions from their luminal counterpart, we attempted to reproduce in vitro the microbial consortia adhering to mucus using an already established three-dimensional model of the human gut microbiota. Electrospun gelatin structures supplemented or not with mucins were inoculated with fecal samples and compared for their ability to support microbial adhesion and growth over time, as well as to shape the composition of the colonizing communities. Both scaffolds allowed the establishment of long-term stable biofilms with comparable total bacterial loads and biodiversity. However, mucin-coated structures harbored microbial consortia especially enriched in Akkermansia, Lactobacillus, and Faecalibacterium, being therefore able to select for microorganisms commonly considered mucosa-associated in vivo. IMPORTANCE These findings highlight the importance of mucins in shaping intestinal microbial communities, even those in artificial gut microbiota systems. We propose our in vitro model based on mucin-coated electrospun gelatin structures as a valid device for studies evaluating the effects of exogenous factors (nutrients, probiotics, infectious agents, and drugs) on mucus-adhering microbial communities.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Biagini
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Leonardo Donati
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Costanza Daddi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center “Nutraceuticals and Food for Health – Nutrafood”, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Belay Mekonnen G. Technology for Carbon Neutral Animal Breeding. Vet Med Sci 2023. [DOI: 10.5772/intechopen.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Animal breeding techniques are to genetically select highly productive animals with less GHG emission intensity, thereby reducing the number of animals required to produce the same amount of food. Shotgun metagenomics provides a platform to identify rumen microbial communities and genetic markers associated with CH4 emissions, allowing the selection of cattle with less CH4 emissions. Moreover, breeding is a viable option to make real progress towards carbon neutrality with a very high rate of return on investment and a very modest cost per tonne of CO2 equivalents saved regardless of the accounting method. Other high technologies include the use of cloned livestock animals and the manipulation of traits by controlling target genes with improved productivity.
Collapse
|
10
|
Kim M. - Invited Review - Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition. Anim Biosci 2023; 36:364-373. [PMID: 36701925 PMCID: PMC9899581 DOI: 10.5713/ab.22.0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.
Collapse
Affiliation(s)
- Minseok Kim
- Division of Animal Science, Chonnam National University, Gwangju 61186,
Korea,Corresponding Author: Minseok Kim, Tel: +82-62-530-2128, Fax: +82-62-530-2129, E-mail:
| |
Collapse
|
11
|
Kibegwa FM, Bett RC, Gachuiri CK, Machuka E, Stomeo F, Mujibi FD. Diversity and functional analysis of rumen and fecal microbial communities associated with dietary changes in crossbreed dairy cattle. PLoS One 2023; 18:e0274371. [PMID: 36638091 PMCID: PMC9838872 DOI: 10.1371/journal.pone.0274371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate the effect of varying roughage and concentrate proportions, in diet of crossbreed dairy cattle, on the composition and associated functional genes of rumen and fecal microbiota. We also explored fecal samples as a proxy for rumen liquor samples. Six crossbred dairy cattle were reared on three diets with an increasing concentrate and reducing roughage amount in three consecutive 10-day periods. After each period, individual rumen liquor and fecal samples were collected and analyzed through shotgun metagenomic sequencing. Average relative abundance of identified Operational Taxonomic Units (OTU) and microbial functional roles from all animals were compared between diets and sample types (fecal and rumen liquor). Results indicated that dietary modifications significantly affected several rumen and fecal microbial OTUs. In the rumen, an increase in dietary concentrate resulted in an upsurge in the abundance of Proteobacteria, while reducing the proportions of Bacteroidetes and Firmicutes. Conversely, changes in microbial composition in fecal samples were not consistent with dietary modification patterns. Microbial functional pathway classification identified that carbohydrate metabolism and protein metabolism pathways dominated microbial roles. Assessment of dietary effects on the predicted functional roles of these microbiota revealed that a high amount of dietary concentrate resulted in an increase in central carbohydrate metabolism and a corresponding reduction in protein synthesis. Moreover, we identified several microbial stress-related responses linked to dietary changes. Bacteroides and Clostridium genera were the principal hosts of these microbial functions. Therefore, the roughage to concentrate proportion has more influence on the microbial composition and microbial functional genes in rumen samples than fecal samples. As such, we did not establish a significant relationship between the rumen and fecal metagenome profiles, and the rumen and fecal microbiota from one animal did not correlate more than those from different animals.
Collapse
Affiliation(s)
- Felix M. Kibegwa
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- * E-mail:
| | - Rawlynce C. Bett
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Charles K. Gachuiri
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Eunice Machuka
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | | |
Collapse
|
12
|
Panattoni A, Calvigioni M, Benvenuti L, D’Antongiovanni V, Pellegrini C, Di Salvo C, Mazzantini D, Celandroni F, Fornai M, Antonioli L, Ghelardi E. The administration of Enterococcus faecium SF68 counteracts compositional shifts in the gut microbiota of diet-induced obese mice. Front Microbiol 2022; 13:1054097. [PMID: 36590404 PMCID: PMC9800805 DOI: 10.3389/fmicb.2022.1054097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Microorganisms with probiotic properties are eliciting an increasing interest as coadjuvants in the prevention and treatment of obesity through modulation of the gut microbiota. In this study, a probiotic formulation based on Enterococcus faecium SF68 was administered to mice fed with a high-fat diet (HFD) to evaluate its efficacy in reducing body mass gain and in modulating the intestinal bacterial composition. Both stool and ileum samples were collected from untreated and treated mice and absolute abundances of specific taxa constituting the gut microbial consortium were evaluated. SF68 administration significantly reduced the HFD-induced weight gain. In these animals, the microbial gut composition shifted toward an enrichment in microbes positively correlated with mucus thickness, lower inflammation, lower glycemia levels, and SCFA production (i.e., Bifidobacterium, Akkermansia, and Faecalibacterium), as well as a depletion in bacterial phyla having a key role in obesity (i.e., Firmicutes, Proteobacteria). Our results demonstrate the efficacy of E. faecium SF68 in adjusting the composition of the dysbiotic microbiota of HFD-fed animals, thus ameliorating clinical conditions and exerting anti-obesity effects.
Collapse
Affiliation(s)
- Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy,*Correspondence: Matteo Fornai,
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Daugaliyeva A, Daugaliyeva S, Ashanin A, Beltramo C, Mamyrova L, Yessembekova Z, Peletto S. Prokaryotic Diversity of Ruminal Content and Its Relationship with Methane Emissions in Cattle from Kazakhstan. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111911. [PMID: 36431046 PMCID: PMC9695961 DOI: 10.3390/life12111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In this study, we analyzed the microbial composition of the rumen contents of cattle from Kazakhstan. Specifically, samples of the liquid and solid fractions of the rumen were collected to determine the quantitative and qualitative composition of methanogenic archaea. Cattle were six steers receiving hay-concentrate feeding. Methane emission was determined by repeated measurements for each animal. Rumen samples were then taken from fistulas and analyzed using 16S metabarcoding via Next-Generation Sequencing (NGS). The difference between the rumen fractions was investigated, resulting in differential distribution of the families Streptococccaceae, Lactobacillaceae, Desulfobulbaceae, and Succinivibrionaceae, which were more abundant in the liquid fraction, while Thalassospiraceae showed a higher presence in the solid fraction. These differences can be explained by the fact that fibrolytic bacteria are associated with the solid fraction compared to the liquid. A relationship between methane emission and methanogenic microbiota was also observed. Steers producing more methane showed microbiota richer in methanogens; specifically, most Mathanobacteriaceae resided in the liquid fraction and solid fraction of animals 1 and 6, respectively. The same animals carried most of the Methanobrevibacter and Methanosphaera genera. On the contrary, animals 2, 3, and 5 hosted a lower amount of methanogens, which also agreed with the data on methane emissions. In conclusion, this study demonstrated a relationship between methane emission and the content of methanogenic archaea in different rumen fractions collected from cattle in Kazakhstan. As a result of the studies, it was found that the solid fraction of the rumen contained more genera of methanogens than the liquid fraction of the rumen. These results prove that taking rumen contents through a fistula is more useful than taking it through a probe. The presented data may be of interest to scientists from all over the world engaged in similar research in a comparative aspect.
Collapse
Affiliation(s)
- Aida Daugaliyeva
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Saule Daugaliyeva
- LLP ‘Scientific Production Center of Microbiology and Virology’, Bogenbay Batyr Str. 105, Almaty 050010, Kazakhstan
- Correspondence:
| | - Alexander Ashanin
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Ligura e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Latipa Mamyrova
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Zinagul Yessembekova
- LLP ‘Kazakh Research Institute for Livestock and Fodder Production’, St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Ligura e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
14
|
Sizova E, Yausheva E, Marshinskaia O, Kazakova T, Khlopko Y, Lebedev S. Elemental composition of the hair and milk of black-spotted cows and its relationship with intestinal microbiome reorganization. Vet World 2022; 15:2565-2574. [PMID: 36590114 PMCID: PMC9798049 DOI: 10.14202/vetworld.2022.2565-2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The cattle breeding system is facing severe problems associated with the increased negative impact of various human activity areas on the environment and the bodies of farm animals. The use of heavy metals in different production areas leads to their accumulation in the environment due to the ingestion of animals and humans through animal products. This study aimed to assess the elemental composition of the hair and milk of black-spotted cows and to identify the relationship between the content of toxic and essential elements and the state of the intestinal microbiome. Materials and Methods The element status was estimated by studying the chemical composition of the biosubstrates using inductively coupled plasma-mass spectroscopy. Based on the analysis of hair, the elemental composition, and the use of the coefficient of toxic load, two groups of animals were formed: Group I, which included cows with a lower load factor, and Group II, which included cows with a higher load factor. Results An increase in the heavy metal concentrations in the hair and milk of animals in Group II was observed. The As, Fe, Pb, Al, Co, Ni, and V concentrations in the hair of cows from Group II increased relative to Group I by 19%, 29%, 24.5%, 32.3%, 35.6%, 21.5%, and 18.2%, respectively. There was a significant increase in the level of Fe by 11.5%, Cr by 8.25%, Mn by 17.6%, Pb by 46.1%, and Cd by 25% in Group II compared with Group I in the assessment of elemental milk composition. There were no apparent changes in the intestinal microbiome of Group II. Conclusion Some heavy metals were accumulated in the bodies and milk of animals. This shows a high probability of heavy metals causing harm to the health of animals and humans.
Collapse
Affiliation(s)
- Elena Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Elena Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia,Corresponding author: Tatiana Kazakova, e-mail: Co-authors: ES: , EY: , OM: , YK: , SL:
| | - Yuriy Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Svyatoslav Lebedev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
15
|
Study of cattle microbiota in different regions of Kazakhstan using 16S metabarcoding analysis. Sci Rep 2022; 12:16410. [PMID: 36180559 PMCID: PMC9525287 DOI: 10.1038/s41598-022-20732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Methane (CH4) is an important greenhouse gas (GHG). Enteric methane emissions from farmed ruminant livestock account for approximately 15% of global GHG emissions, with approximately 44% of livestock emissions in the form of methane. The purpose of the research is to study the influence of feeding types and regional characteristics of Kazakhstan on the microbiota of feces and the number of methane-forming archaea of beef and meat-and-dairy cattle productivity. For this purpose, fecal samples were taken rectally from 37 cattle heads from four regions of Kazakhstan (Western, Southern, Northern and Southeast). The taxonomic composition of the community in all samples was determined by 16S metabarcoding; additionally alpha and beta diversities were calculated. The dominant phyla were: Firmicutes (57.30%), Bacteroidetes (17.00%), Verrucomicrobia (6.88%), Euryarchaeota (6.49%), Actinobacteria (4.77%) and Patescibacteria (3.38%). Significant differences with regard to methanogens bacteria were found: Euryarchaeota were less present in animals from Western Kazakhstan (2.40%), while Methanobacteriales and Methanobrevibacter were prevalent in Southeast, and less abundant in Western region. Western Kazakhstan differs from the other regions likely because animals are mainly grazed in the pasture. Thus, grazing animals has an impact on their microbiota thus leading to a decrease in methane emissions.
Collapse
|
16
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
17
|
Sim S, Lee H, Yoon S, Seon H, Park C, Kim M. The impact of different diets and genders on fecal microbiota in Hanwoo cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:897-910. [PMID: 36287745 PMCID: PMC9574620 DOI: 10.5187/jast.2022.e71] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
Bovine fecal microbiota is important for host health and its composition can be
affected by various factors, such as diet, age, species, breed, regions, and
environments. The objective of this study was to evaluate the impact of diet and
gender on fecal microbiota in Korean native Hanwoo cattle. The 16S rRNA gene
amplicon sequencing of fecal microbiota was conducted from 44 Hanwoo cattle
divided into four groups: (1) 11 heifers fed an oat hay plus total mixed ration
(TMR) diet for breeding (HOTB), (2) 11 heifers fed an early fattening TMR diet
(HEFT), (3) 11 steers fed the early fattening TMR diet (SEFT), and (4) 11 steers
fed the late fattening TMR diet (SLFT). Firmicutes and Bacteroidota were the
first and second most dominant phyla in all the samples, respectively. The
Firmicutes/Bacteroidota (F/B) ratio associated with feed efficiency was
significantly greater in the SLFT group than in the other groups. At the genus
level, Romboutsia, Paeniclostridium, and
Turicibacterwere the most abundant in the SLFT while
Akkermansia, Bacteroides, and
Monoglobus were the most abundant in the HOTB group.
Although the same early fattening TMR diet was fed to Hanwoo heifers and steers,
Marvinbryantia and Coprococcus were the
most abundant in the HEFT group while Alistipes and
Ruminococcus were the most abundant in the SEFT group.
Shannon and Simpson diversity indices were significantly lower in the SLFT group
than in the other groups. Distribution of fecal microbiota and functional
genetic profiles were significantly different among the four treatment groups.
The present study demonstrates that different diets and genders can affect fecal
microbiota and the F/B ratio may be associated with feed efficiency in Hanwoo
cattle. Our results may help develop strategies to improve gut health and
productivity through manipulation of fecal microbiota using the appropriate diet
considering Hanwoo cattle gender.
Collapse
Affiliation(s)
- Seunghyeun Sim
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Huseong Lee
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea,Graduate School of Agricultural Science,
Tohoku University, Sendai 980-0845, Japan
| | - Sang Yoon
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Hyeonsu Seon
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Cheolju Park
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Minseok Kim
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea,Corresponding author Minseok Kim,
Division of Animal Science, Chonnam National University, Gwangju 61186, Korea.
Tel: +82-62-530-2128, E-mail:
| |
Collapse
|
18
|
Elolimy AA, Liang Y, Wilachai K, Alharthi AS, Paengkoum P, Trevisi E, Loor JJ. Residual feed intake in peripartal dairy cows is associated with differences in milk fat yield, ruminal bacteria, biopolymer hydrolyzing enzymes, and circulating biomarkers of immunometabolism. J Dairy Sci 2022; 105:6654-6669. [PMID: 35840400 DOI: 10.3168/jds.2021-21274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
Residual feed intake (RFI) measures feed efficiency independent of milk production level, and is typically calculated using data past peak lactation. In the current study, we retrospectively classified multiparous Holstein cows (n = 320) from 5 of our published studies into most feed-efficient (M-eff) or least feed-efficient (L-eff) groups using performance data collected during the peripartal period. Objectives were to assess differences in profiles of plasma biomarkers of immunometabolism, relative abundance of key ruminal bacteria, and activities of digestive enzymes in ruminal digesta between M-eff and L-eff cows. Individual data from cows with ad libitum access to a total mixed ration from d -28 to d +28 relative to calving were used. A linear regression model including dry matter intake (DMI), energy-corrected milk (ECM), changes in body weight (BW), and metabolic BW was used to classify cows based on RFI divergence into L-eff (n = 158) and M-eff (n = 162). Plasma collected from the coccygeal vessel at various times around parturition (L-eff = 60 cows; M-eff = 47 cows) was used for analyses of 30 biomarkers of immunometabolism. Ruminal digesta collected via esophageal tube (L-eff = 19 cows; M-eff = 29 cows) was used for DNA extraction and assessment of relative abundance (%) of 17 major bacteria using real-time PCR, as well as activity of cellulase, amylase, xylanase, and protease. The UNIVARIATE procedure of SAS 9.4 (SAS Institute Inc.) was used for analyses of RFI coefficients. The MIXED procedure of SAS was used for repeated measures analysis of performance, milk yield and composition, plasma immunometabolic biomarkers, ruminal bacteria, and enzyme activities. The M-eff cows consumed less DMI during the peripartal period compared with L-eff cows. In the larger cohort of cows, despite greater overall BW for M-eff cows especially in the prepartum (788 vs. 764 kg), no difference in body condition score was detected due to RFI or the interaction of RFI × time. Milk fat content (4.14 vs. 3.75 ± 0.06%) and milk fat yield (1.75 vs. 1.62 ± 0.04 kg) were greater in M-eff cows. Although cumulative ECM yield did not differ due to RFI (1,138 vs. 1,091 ± 21 kg), an RFI × time interaction due to greater ECM yield was found in M-eff cows. Among plasma biomarkers studied, concentrations of nonesterified fatty acids, β-hydroxybutyrate, bilirubin, ceruloplasmin, haptoglobin, myeloperoxidase, and reactive oxygen metabolites were overall greater, and glucose, paraoxonase, and IL-6 were lower in M-eff compared with L-eff cows. Among bacteria studied, abundance of Ruminobacter amylophilus and Prevotella ruminicola were more than 2-fold greater in M-eff cows. Despite lower ruminal activity of amylase in M-eff cows in the prepartum, regardless of RFI, we observed a marked linear increase after calving in amylase, cellulase, and xylanase activities. Protease activity did not differ due to RFI, time, or RFI × time. Despite greater concentrations of biomarkers reflective of negative energy balance and inflammation, higher feed efficiency measured as RFI in peripartal dairy cows might be associated with shifts in ruminal bacteria and amylase enzyme activity. Further studies could help address such factors, including the roles of the liver and the mammary gland.
Collapse
Affiliation(s)
- A A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana 61801; Department of Animal Production, National Research Centre, Giza 12622, Egypt
| | - Y Liang
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - K Wilachai
- Program of Animal science, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand; Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand, 30000
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - P Paengkoum
- Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand, 30000
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facolta di Scienze Agrarie, Alimentari e Ambientali, Universita Cattolicadel Sacro Cuore, Piacenza 29122, Italy
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
19
|
Malik P, Trivedi S, Kolte A, Sejian V, Bhatta R, Rahman H. Diversity of rumen microbiota using metagenome sequencing and methane yield in Indian sheep fed on straw and concentrate diet. Saudi J Biol Sci 2022; 29:103345. [PMID: 35770269 PMCID: PMC9234715 DOI: 10.1016/j.sjbs.2022.103345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteroidetes and Firmicutes were most prevalent bacteria in the sheep rumen. Bacteroidetes were negatively correlated with the Euryarchaeota. Archaea constituted ∼2.5% of the ruminal microbiota. Methanobrevibacter gottschalkii constituted > 50% of the ruminal archaea. Hydrogenotrophic methanogens distribution leads to the variability in methane yield.
An in vivo study aiming to investigate the rumen methanogens community structure was conducted in Mandya sheep fed on straw and concentrate diet. The ruminal fluid samples were collected and processed for unravelling the rumen microbiota and methanogens diversity. Further, the daily enteric methane emission and methane yield was also quantified using the SF6 tracer technique. Results indicated that the Bacteroidetes (∼57%) and Firmicutes (25%) were two prominent affiliates of the bacterial community. Archaea represented about 2.5% of the ruminal microbiota. Methanobacteriales affiliated methanogens were the most prevalent in sheep rumen. The study inveterate that the ruminal archaea community in sheep is composed of 9 genera and 18 species. Methanobrevibacter represented the largest genus of the archaeome, while methylotrophs genera constituted only 13% of the community. Methanobrevibacter gottschalkii was the prominent methanogen, and Methaobrevibacter ruminantium distributed at a lower frequency (∼2.5%). Among Methanomassiliicoccales, Group 12 sp. ISO4-H5 constituted the most considerable fraction (∼11%). KEGG reference pathway for methane metabolism indicated the formation of methane through hydrogenotrophic and methylotrophic pathways, whereas the acetoclastic pathway was not functional in sheep. The enteric methane emission and methane yield was 19.7 g/d and 20.8 g/kg DMI, respectively. Various species of Methanobrevibacter were differently correlated, and the distribution of hydrogenotrophic methanogens mainly explained the variability in methane yield between the individual sheep. It can be inferred from the study that the hydrogenotrophic methanogens dominate the rumen archaeal community in sheep and methylotrophic/aceticlastic methanogens represent a minor fraction of the community. Further studies are warranted for establishing the metabolic association between the prevalent hydrogenotrophs and methylotrophs to identify the key reaction for reducing methane emission.
Collapse
Affiliation(s)
- P.K. Malik
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
- Corresponding author.
| | - S. Trivedi
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - A.P. Kolte
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - V. Sejian
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - R. Bhatta
- Director, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - H. Rahman
- International Livestock Research Institute, South Asia Regional Office, New Delhi 110 012, India
| |
Collapse
|
20
|
The Distribution Characteristics of Aerosol Bacteria in Different Types of Pig Houses. Animals (Basel) 2022; 12:ani12121540. [PMID: 35739876 PMCID: PMC9219456 DOI: 10.3390/ani12121540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Microbial aerosols from pig houses can be released into the environment, posing a serious threat to biosafety and public health. At present, there are few studies on the structural characteristics of aerosol bacteria in piggeries at different growth stages. It is important to understand the characteristics of aerosol bacteria in pig houses to solve the problems of air pollution and disease control in pig houses at different growth stages. In this study, bacterial aerosol concentrations and bacterial communities were compared in pig houses at different growth stages in Hebei Province, China. It was found that bacterial concentrations, community richness, and diversity in the air increased with the age of pigs. There are many pathogenic bacteria in the microbial aerosols of piggery. Our study highlights the importance of more comprehensive research and analysis of microbial aerosols in pig houses. Precautions for air pollution should be instituted in pig houses, including wearing masks, rigorous disinfection, and hygiene procedures. Abstract With the development of modern pig raising technology, the increasing density of animals in pig houses leads to the accumulation of microbial aerosols in pig houses. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in different pig houses to solve the problems of air pollution and disease prevention and control in different pig houses. This work investigated the effects of growth stages on bacterial aerosol concentrations and bacterial communities in pig houses. Three traditional types of closed pig houses were studied: farrowing (FAR) houses, weaning (WEA) houses, and fattening (FAT) houses. The Andersen six-stage sampler and high-volume air sampler were used to assess the concentrations and size distribution of airborne bacteria, and 16S rRNA gene sequencing was used to identify the bacterial communities. We found that the airborne bacterial concentration, community richness, and diversity index increased with pig age. We found that Acinetobacter, Erysipelothrix, Streptococcus, Moraxella, and Aerococcus in the microbial aerosols of pig houses have the potential risk of causing disease. These differences lead us to believe that disinfection strategies for pig houses should involve a situational focus on environmental aerosol composition on a case-by-case basis.
Collapse
|
21
|
Liu X, Tang Y, Wu J, Liu JX, Sun HZ. Feedomics provides bidirectional omics strategies between genetics and nutrition for improved production in cattle. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:314-319. [PMID: 35600547 PMCID: PMC9097626 DOI: 10.1016/j.aninu.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing the efficiency and sustainability of cattle production is an effective way to produce valuable animal proteins for a growing human population. Genetics and nutrition are the 2 major research topics in selecting cattle with beneficial phenotypes and developing genetic potentials for improved performance. There is an inextricable link between genetics and nutrition, which urgently requires researchers to uncover the underlying molecular mechanisms to optimize cattle production. Feedomics integrates a range of omic techniques to reveal the mechanisms at different molecular levels related to animal production and health, which can provide novel insights into the relationships of genes and nutrition/nutrients. In this review, we summarized the applications of feedomics techniques to reveal the effect of genetic elements on the response to nutrition and investigate how nutrients affect the functional genome of cattle from the perspective of both nutrigenetics and nutrigenomics. We highlighted the roles of rumen microbiome in the interactions between host genes and nutrition. Herein, we discuss the importance of feedomics in cattle nutrition research, with a view to ensure that cattle exhibit the best production traits for human consumption from both genetic and nutritional aspects.
Collapse
|
22
|
Liu Y, Liu C, Wu H, Meng Q, Zhou Z. Small Intestine Microbiome and Metabolome of High and Low Residual Feed Intake Angus Heifers. Front Microbiol 2022; 13:862151. [PMID: 35531283 PMCID: PMC9069012 DOI: 10.3389/fmicb.2022.862151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
The gastrointestinal tract (GIT) contains complex microbial communities and plays an essential role in the overall health of the host. Previous studies of beef cattle feed efficiency have primarily concentrated on the ruminal microbiota because it plays a key role in energy production and nutrient supply in the host. Although the small intestine is the important site of post-ruminal digestion and absorption of nutrients, only a few studies have explored the relationship between the microbial populations in the small intestine and feed efficiency. Moreover, variations in GIT metabolites contribute to differences in feed efficiency. The objective of this study was to investigate relationships among bacterial populations of duodenum, jejunum, ileum; microbial metabolites; and RFI phenotype of beef cattle. We carried out by using Illumina MiSeq sequencing of the 16S rRNA V3-V4 region and liquid chromatography-mass spectrometry (LC–MS). In the duodenum, the relative abundances of Firmicutes ( p < 0.01), Lachnospiraceae, Ruminococcaceae, Family_XIII, Christensenellaceae, Christensenellaceae_R-7_group ( p < 0.05), and Lachnospiraceae_NK3A20_group ( p < 0.05) were higher in the low residual feed intake (LRFI) group compared with the high residual feed intake (HRFI) group, whereas the HRFI group had higher abundances of Proteobacteria and Acinetobacter ( p < 0.01). In the jejunum, the relative abundances of Lachnospiraceae and Lachnospiraceae_NK3A20_group were higher in the LRFI group ( p < 0.05). In the ileum, the relative abundances of Ruminococcaceae ( p < 0.01), Christensenellaceae, Christensenellaceae_R-7_group, and Ruminococcus_2 were also higher in the LRFI group ( p < 0.05). Moreover, the genera Lachnospiraceae_NK3A20_group, Christensenellaceae_R-7_group, and Ruminococcus_2 were negatively associated with RFI, while the genus Acinetobacter was positively associated with RFI. The metabolomics analysis revealed that the LRFI group significantly improved protein digestion and absorption, as well as glycerophospholipid metabolism in the duodenum, jejunum, ileum. The correlation between intestinal microorganisms and metabolites revealed that some microorganisms play an important role in amino acid metabolism, glycerophospholipid metabolism, nutrient digestion and absorption, and antioxidant enhancement. The present study provides a better understanding of the small intestinal microbiota and metabolites of beef cattle with different RFI phenotypes and the relationships among them, which are potentially important for the improvement of beef cattle feed efficiency.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Asselstine V, Lam S, Miglior F, Brito LF, Sweett H, Guan L, Waters SM, Plastow G, Cánovas A. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. J Anim Sci 2021; 99:6377879. [PMID: 34586400 PMCID: PMC8480417 DOI: 10.1093/jas/skab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics” technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for “-omics” technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture’s overall environmental footprint.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hannah Sweett
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leluo Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
24
|
The Effect of Forage-to-Concentrate Ratio on Schizochytrium spp.-Supplemented Goats: Modifying Rumen Microbiota. Animals (Basel) 2021; 11:ani11092746. [PMID: 34573711 PMCID: PMC8466047 DOI: 10.3390/ani11092746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The in-depth understanding of rumen functions would be the greatest achievement of animal nutritionists. Hence, plenty of feed additives and various nutritional techniques are studied in modifying and understand the rumen habitat. In our study, we investigated the effect of alteration of the forage: concentrate (F:C) ratio in goats supplemented with the microalgae Schizochytrium spp. on rumen microbiota communities and enzymatic activity. Our results suggested that even though specific microbes’ abundance was altered, their corresponding enzymatic potential did not follow the same trend. Nonetheless, principal ruminal functions such as ammonia accumulation, fibrolytic activity, and degradation rate of specific fatty acids were also modified due to dietary intervention. Abstract The inclusion of feed additives and the implementation of various nutritional strategies are studied to modify the rumen microbiome and consequently its function. Nevertheless, rumen enzymatic activity and its intermediate products are not always matched with the microbiome structure. To further elucidate such differences a two-phase trial using twenty-two dairy goats was carried out. During the first phase, both groups (20HF n = 11; high forage and 20HG n = 11; high grain) were supplemented with 20 g Schizochytrium spp./goat/day. The 20HF group consumed a diet with a forage:concentrate (F:C) ratio of 60:40 and the 20HG-diet consisted of a F:C = 40:60. In the second phase, the supplementation level of Schizochytrium spp. was increased to 40 g/day/goat while the F:C ratio between the two groups were remained identical (40HF n = 11; high forage and 40HG n = 11; high grain). By utilizing a next-generation sequencing technology, we monitored that the high microalgae inclusion level and foremost in combination with a high grains diet increased the unmapped bacteria within the rumen. Bacteroidetes and Prevotella brevis were increased in the 40HG -fed goats as observed by using a qPCR platform. Additionally, methanogens and Methanomassiliicoccales were increased in high microalgae-fed goats, while Methanobrevibacter and Methanobacteriales were decreased. Fibrolytic bacteria were decreased in high microalgae-fed goats, while cellulolytic activity was increased. Ammonia was decreased in high grains-fed goats, while docosapentaenoic and docosahexaenoic acids showed a lower degradation rate in the rumen of high forage-fed goats. The alteration of the F:C ratio in goats supplemented with Schizochytrium spp. levels modified both ruminal microbiota and enzymatic activity. However, there was no significant consistency in the relations between them.
Collapse
|
25
|
Effect of high proportion concentrate dietary on Ashdan Yak jejunal barrier and microbial function in cold season. Res Vet Sci 2021; 140:259-267. [PMID: 34537552 DOI: 10.1016/j.rvsc.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
The intestinal health of ruminants plays a vital role in absorbing and metabolizing nutrients. In order to explore the jejunal barrier and microbiota dysfunction of Ashdan yaks, animals were fed with a high proportion of concentrated feeds in cold season. In present study, twelve Ashdan male yaks were arbitrarily separated into two categories, namely FF and CF. Compositional and functional differences in their jejunum barrier and microbiota between the FF and CF yaks were compared using metagenomics and proteomics methods. The results showed that the activity of jejunum digestive protease and microbe metabolite of forage-fed yaks were more conducive to healthy cultivation than the concentrate-fed yaks. 57 differentially expressed proteins (DEPs) were recognized using label-free MS, those could conclude to 2 principal classes: structural proteins and inflammatory factors, and 14 proteins were relatively active in those principal classes. Firmicutes were the dominant bacterial phylum in the jejunum microbiota of both the forage-fed group (24.33%) and concentrate-fed group (23.16%). As compared to forage-fed group, the concentrate-fed group showed enhanced alpha diversity and reduced beta diversity of the jejunal microbiota. The long-term high-proportion concentrate feeding inhibited the growth of Actinobacteria, Proteo-bacteria, Ascomycota, Bacteroidetes and stimulated the growth of Streptophyta, Cyanobacteria, Fusobacteria and Chlamydiae. The concentrate-fed group showed increase in the abundance of immune system process, along with decrease in the metabolic process, especially the binding process. Interestingly, the proteomics and metagenomics results were both inclined to the enrichment of jejunum mechanical barrier and inflammatory response. Overall, the study suggested that the long-term high-proportion concentrate feeding affected the expressions of specific jejunum proteins and composition of microbiota, which damaged the jejunum barrier and the function of microbiota in yaks.
Collapse
|
26
|
Hong SW, Park J, Jeong H, Kim M. Evaluation of the microbiome composition in particulate matter inside and outside of pig houses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:640-650. [PMID: 34189511 PMCID: PMC8203996 DOI: 10.5187/jast.2021.e52] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM) produced in pig houses may contain microbes which can
spread by airborne transmission, and PM and microbes in PM adversely affect
human and animal health. To investigate the microbiome in PM from pig houses,
nine PM samples were collected in summer 2020 inside and outside of pig houses
located in Jangseong-gun, Jeollanam-do Province, Korea, comprising three PM
samples from within a nursery pig house (I-NPH), three samples from within a
finishing pig house (I-FPH), and three samples from outside of the pig houses
(O-PH). Microbiomes were analyzed using 16S rRNA gene amplicon sequencing.
Firmicutes was the most dominant phylum and accounted for 64.8%–97.5% of
total sequences in all the samples, followed by Proteobacteria
(1.4%–21.8%) and Bacteroidetes (0.3%–13.7%). In total, 31 genera
were represented by > 0.3% of all sequences, and only
Lactobacillus, Turicibacter, and
Aerococcus differed significantly among the three PM sample
types. All three genera were more abundant in the I-FPH samples than in the O-PH
samples. Alpha diversity indices did not differ significantly among the three PM
types, and a principal coordinate analysis suggested that overall microbial
communities were similar across PM types. The concentration of PM did not
significantly differ among the three PM types, and no significant correlation of
PM concentration with the abundance of any potential pathogen was observed. The
present study demonstrates that microbial composition in PM inside and outside
of pig houses is similar, indicating that most microbe-containing PM inside pig
houses leaks to the outside from where it, along with microbe-containing PM on
the outside, may re-enter the pig houses. Our results may provide useful
insights regarding strategies to mitigate potential risk associated with pig
farming PM and pathogens in PM.
Collapse
Affiliation(s)
- Se-Woon Hong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea.,AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Jinseon Park
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea
| | - Hanna Jeong
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea.,Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture, Chonnam National University, Gwangju 61186, Korea
| | - Minseok Kim
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Korea.,Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
27
|
Mavrommatis A, Sotirakoglou K, Skliros D, Flemetakis E, Tsiplakou E. Dose and time response of dietary supplementation with Schizochytrium sp. on the abundances of several microorganisms in the rumen liquid of dairy goats. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol 2020; 20:302. [PMID: 33036549 PMCID: PMC7547465 DOI: 10.1186/s12866-020-01993-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Collapse
Affiliation(s)
- Ga Gong
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Saisai Zhou
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Runbo Luo
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Zhuoma Gesang
- Animal Epidemic Prevention and Control Center of Tibet Autonomous Region, Lasa, Tibet, China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China.
| |
Collapse
|
29
|
Azad E, Fehr KB, Derakhshani H, Forster R, Acharya S, Khafipour E, McGeough E, McAllister TA. Interrelationships of Fiber-Associated Anaerobic Fungi and Bacterial Communities in the Rumen of Bloated Cattle Grazing Alfalfa. Microorganisms 2020; 8:microorganisms8101543. [PMID: 33036363 PMCID: PMC7601590 DOI: 10.3390/microorganisms8101543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Frothy bloat is major digestive disorder of cattle grazing alfalfa pastures. Among the many factors identified to contribute to the development of frothy bloat, the disruption of rumen microbiota appears to be of central importance. Anaerobic rumen fungi (ARF) play an important role in sequential breakdown and fermentation of plant polysaccharides and promote the physical disruption of plant cell walls. In the present study, we investigated the dynamics of ARF during the development of alfalfa-induced frothy bloat and in response to bloat preventive treatments. By sequencing the internal transcribed spacer (ITS1) region of metagenomic DNA from the solid fraction of rumen contents, we were able to identify eight distinct genera of ARF, including Neocallimastix, Caecomyces, Orpinomyces, Piromyces, Cyllamyces, Anaeromyces, Buwchfawromyces, and unclassified Neocallimastigaceae. Overall, transition of steers from a baseline hay diet to alfalfa pastures was associated with drastic changes in the composition of the fungal community, but the overall composition of ARF did not differ (p > 0.05) among bloated and non-bloated steers. A correlation network analysis of the proportion of ARF and ruminal bacterial communities identified hub fungal species that were negatively correlated with several bacterial species, suggesting the presence of inter-kingdom competition among these rumen microorganisms. Interestingly, the number of negative correlations among ARF and bacteria decreased with frothy bloat, indicating a potential disruption of normal microbial profiles within a bloated rumen ecosystem. A better understanding of fungal-bacterial interactions that differ among bloated and non-bloated rumen ecosystem could advance our understanding of the etiology of frothy bloat.
Collapse
Affiliation(s)
- Elnaz Azad
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Kelsey B. Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Hooman Derakhshani
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Robert Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
- Diamond V, Cedar Rapids, IA 52404, USA
| | - Emma McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
| | - Tim A. McAllister
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.A.); (K.B.F.); (E.K.); (E.M.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (R.F.); (S.A.)
- Correspondence: ; Tel.: +1-403-315-9916
| |
Collapse
|
30
|
Barden M, Richards-Rios P, Ganda E, Lenzi L, Eccles R, Neary J, Oultram J, Oikonomou G. Maternal influences on oral and faecal microbiota maturation in neonatal calves in beef and dairy production systems. Anim Microbiome 2020; 2:31. [PMID: 33499967 PMCID: PMC7807724 DOI: 10.1186/s42523-020-00049-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background The dam is considered an important source of microbes for the calf; consequently, the development of calf microbiota may vary with farming system due to differences between the contact the calf has with the dam. The objective of this study was to characterise the early changes in the composition of oral and faecal microbiota in beef and dairy calves (N = 10) using high-throughput sequencing of the 16S rRNA gene. The microbiota of calves was compared to selected anatomical niches on their dams which were likely to contribute to the vertical transfer of microbes. Results A total of 14,125 amplicon sequence variants (ASVs) were identified and taxonomically assigned. The oral microbiota of calves and their dams were composed of more similar microbes after the first 4 weeks of life than immediately after calving. The faecal microbiota of four-week old calves was composed of microbes which were more similar to those found in the oral microbiota of calves and adult cows than the faecal microbiota of adult cows. Specific ASVs were identified in the oral microbiota of four-week old calves that were also present in cow niches at calving, whereas very few ASVs were present in the calf faecal microbiota at four-weeks of age were present in any adult cow niche at calving. These results were observed in both beef and dairy calves. Conclusions We did not observe any marked differences in the maturation of the oral and faecal microbiota between beef or dairy calves, despite dairy calves having very limited contact with their dam. This suggests the development of gastrointestinal microbiota in calves may not be affected by continued vertical transmission of microbes from the dam. Although the calf faecal microbiota changed over the first four-weeks of life, it was composed of microbes which were phylogenetically closer to those in the oral microbiota of calves and adult cows than the faeces of adult cows. There was little evidence of persistent microbial seeding of the calf faeces from anatomical niches on the cow at calving in either beef or dairy animals.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Peter Richards-Rios
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Luca Lenzi
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Richard Eccles
- Department of Functional and Comparative Genomics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph Neary
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne Oultram
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
31
|
Cendron F, Niero G, Carlino G, Penasa M, Cassandro M. Characterizing the fecal bacteria and archaea community of heifers and lactating cows through 16S rRNA next-generation sequencing. J Appl Genet 2020; 61:593-605. [PMID: 32851593 PMCID: PMC7652803 DOI: 10.1007/s13353-020-00575-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to describe the fecal bacteria and archaea composition of Holstein-Friesian and Simmental heifers and lactating cows, using 16S rRNA gene sequencing. Bacteria and archaea communities were characterized and compared between heifers and cows of the same breed. Two breeds from different farms were considered, just to speculate about the conservation of the microbiome differences between cows and heifers that undergo different management conditions. The two breeds were from two different herds. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant phyla in all experimental groups. Alpha- and beta-diversity metrics showed significant differences between heifers and cows within the same breed, supported by principal coordinate analysis. The analysis of Holstein-Friesian fecal microbiome composition revealed 3 different bacteria families, 2 genera, and 2 species that differed between heifers and cows; on the other hand, Simmental heifers and cows differed only for one bacteria family, one archaeal genus, and one bacteria species. Results of the present study suggest that fecal communities of heifers and cows are different, and that fecal microbiome is maintained across experimental groups.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - Giovanni Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Gabriele Carlino
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
32
|
Willms IM, Yuan J, Penone C, Goldmann K, Vogt J, Wubet T, Schöning I, Schrumpf M, Buscot F, Nacke H. Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes (Basel) 2020; 11:E150. [PMID: 32019196 PMCID: PMC7073645 DOI: 10.3390/genes11020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6')-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.
Collapse
Affiliation(s)
- Inka M. Willms
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Jingyue Yuan
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland;
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
| | - Juliane Vogt
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, D-85354 Freising, Germany;
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Ingo Schöning
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - Marion Schrumpf
- Max Planck Institute for Biogeochemistry, D-07745 Jena, Germany; (I.S.); (M.S.)
| | - François Buscot
- Department of Soil Ecology, UFZ—Helmholtz Centre for Environmental Research, D-06120 Halle-Saale, Germany; (K.G.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Heiko Nacke
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany; (I.M.W.); (J.Y.)
| |
Collapse
|
33
|
Barrett K, Lange L. Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). BIOTECHNOLOGY FOR BIOFUELS 2019; 12:102. [PMID: 31168320 PMCID: PMC6489277 DOI: 10.1186/s13068-019-1436-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/13/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Insight into the function of carbohydrate-active enzymes is required to understand their biological role and industrial potential. There is a need for better use of the ample genomic data in order to enable selection of the most interesting proteins for further studies. The basis for elaborating a new approach to sequence analysis is the hypothesis that when using conserved peptide patterns to determine the similarities between proteins, the exact spacing between conserved adjacent amino acids in the proteins plays a prominent functional role. Thus, the objective of developing the method of conserved unique peptide patterns (CUPP) is to construct a peptide-based grouping and validate the method to provide evidence that CUPP captures function-related features of the individual carbohydrate-active enzymes (as defined by CAZy families). This approach facilitates grouping of enzymes at a level lower than protein families and/or subfamilies. A standardized, efficient, and robust approach to functional annotation of carbohydrate-active enzymes would support improved molecular insight into enzyme-substrate interaction. RESULTS A new nonalignment-based clustering and functional annotation tool was developed that uses conserved unique peptides patterns to perform automated clustering of proteins and formation of protein groups. A peptide-based model was constructed for each of these protein CUPP groups to be used to automatically annotate protein family, subfamily, and EC function of carbohydrate-active enzymes. CUPP prediction can annotate proteins (from any CAZy family) with high F-score to existing family (0.966), subfamily (0.961), and EC-function (0.843). The speed of the CUPP program was estimated and exemplified by prediction of the 504,017 nonredundant proteins of CAZy in less than four CPU hours. CONCLUSION It was possible to construct an automated system for clustering proteins within families and use the resulting CUPP groups to directly build peptide-based models for genome annotation. The CUPP runtime, F-score, sensitivity, and precisions of family and subfamily annotations match or represent an improvement compared to state-of-the-art tools. The speed of the CUPP annotation is similar to the rapid DIAMOND annotation tool. CUPP facilitates automated annotation of full genome assemblies to any CAZy family.
Collapse
Affiliation(s)
- Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby, Denmark
| |
Collapse
|
34
|
Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci 2019; 102:3781-3804. [PMID: 30904293 DOI: 10.3168/jds.2018-14985] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
Abstract
The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.
Collapse
Affiliation(s)
- V Vasta
- Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy
| | - M Daghio
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Cappucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - A Buccioni
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Viti
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy.
| |
Collapse
|
35
|
Elolimy AA, Arroyo JM, Batistel F, Iakiviak MA, Loor JJ. Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows. J Anim Sci Biotechnol 2018; 9:43. [PMID: 29796256 PMCID: PMC5956847 DOI: 10.1186/s40104-018-0258-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Residual feed intake (RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most- and the least-efficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d − 10 to d 60 relative to the calving date were used. Cows were classified into most-efficient (i.e. with low RFI, n = 10) and least-efficient (i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake (DMI), fat-corrected milk (FCM), changes in body weight (BW), and metabolic BW. Results The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d − 10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows. Conclusions The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows. Electronic supplementary material The online version of this article (10.1186/s40104-018-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | - José M Arroyo
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA.,3Departamento de Nutrición Animal, Instituto de Producción Animal, Facultad de Veterinaria, Universidad de la Republica, Ruta 1 km 42.5, 80100 San José, Uruguay
| | - Fernanda Batistel
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | | | - Juan J Loor
- 1Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL USA.,2Department of Animal Sciences, University of Illinois, Urbana, IL USA.,4Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, IL USA
| |
Collapse
|