1
|
Fidriyanto R, Juanssilfero AB, Sarwono KA, Ridwan R, Nahrowi N, Jayanegara A. Enhancing physicochemical, rheological properties, and in vitro rumen fermentation of starch with Melastoma candidum D. Don fruit extract. Anim Sci J 2024; 95:e13950. [PMID: 38712489 DOI: 10.1111/asj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
The utilization of polyphenol-modified starch in ruminants has not undergone extensive exploration. This study aimed to investigate the impact of the complex formed between starch and Melastoma candidum D. Don fruit extract on physicochemical properties, phenol release kinetics in various buffers simulating the gastrointestinal tract, methane production, and post-rumen digestibility. The interaction between starch and M. candidum D. Don fruit extract significantly (p < 0.001) increased resistant starch and particle size diameter. The maximum phenolic release from complex between starch and M. candidum D. Don fruit extract, due to gastrointestinal tract-simulated buffers, ranged from 22.96 to 34.60 mg/100 mg tannic acid equivalent. However, rumen and abomasum-simulated buffers released more phenolic content, whereas the intestine-simulated buffer showed higher antioxidant activity (ferric ion-reducing antioxidant power). Furthermore, complex between starch and M. candidum D. Don fruit extract significantly decreased dry matter rumen digestibility (p < 0.001) and maximum methane gas production (p < 0.001).
Collapse
Affiliation(s)
- Rusli Fidriyanto
- Program Study of Nutrition and Feed Sciences, Graduate School of Institut Pertanian Bogor. Jl. Agatis, Bogor, West Java, Indonesia
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Ki Ageng Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Nahrowi Nahrowi
- Centre for Tropical Animal Studies (CENTRAS), Institut Pertanian Bogor. Kampus IPB Baranangsiang, Bogor, West Java, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, West Java, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, West Java, Indonesia
| |
Collapse
|
2
|
Wang Y, Xia H, Yang Q, Yang D, Liu S, Cui Z. Evaluating Starter Feeding on Ruminal Function in Yak Calves: Combined 16S rRNA Sequencing and Metabolomics. Front Microbiol 2022; 13:821613. [PMID: 35733970 PMCID: PMC9207444 DOI: 10.3389/fmicb.2022.821613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
For young ruminants, starter feeding can effectively facilitate the growth and development of rumen in ruminants, but the development of rumen is an important physiological challenge as it remains unclear for the mechanism of starter feeding stimulating. In this study, we performed an analysis of ruminal microbiota and their metabolites in yak calves to explore how the ruminal microbiota and their metabolites stimulate the ruminal function. This study associated 16S rRNA sequencing with liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to evaluate the effects of starter feeding on ruminal microbiota diversity and metabolites in yak calves. We designed the experiment using 20 yak calves that were assigned equally into 2 groups, based on feeding milk replacer; the control (RA) group was fed with alfalfa hay while the treatment (RAS) group was fed with alfalfa hay and starter. After the experiment, we investigated the ruminal microbiota and metabolites through 16S rRNA sequencing and LC-MS-based metabolomics. During the preweaning period, the RAS group significantly promoted the growth performance and ruminal development in yak calves, including increases in body weight, chest girth, and development of rumen (P < 0.05). The RAS group increased the relative abundance of Bacteroidota, Proteobacteria, Chloroflexi, Synergistota, and Spirochaetota and decreased the abundance of Firmicutes, Desulfobacterota, Actinobacteriota, and Actinobacteriota at the phylum level (P < 0.05). At the genus level, the ruminal content of the RAS group was significantly enriched for Rikenellaceae_RC9_gut_group and Ruminococcus, while depleted for Prevotella, Christensenellaceae_R-7_group, and NK4A214_group (P < 0.05). A total of 37 metabolites were identified between the RA group and the RAS group, of which 15 metabolites were upregulated and 22 metabolites were downregulated compared with the RA group. Metabolic pathway analyses indicated that upregulated the metabolites of the RAS group yak calves were related to carbohydrate metabolism, ubiquinone, and other terpenoid-quinone biosynthesis, while the downregulated metabolic pathway was relevant to xenobiotic biodegradation, metabolism, and nucleotide metabolism. In summary, starter feeding before weaning significantly increased the dry matter intake and body weight of yak calves, changed the diversity and abundance of ruminal microbiota, and positively regulated the good development of ruminal morphology and function, providing an important basis for high-quality cultivation and the nutritional level of nutrition of yak calves in the Qinghai Tibet plateau. This study is based on the availability of 16S rRNA sequencing and LC-MS-based metabolomics in clarifying the function of starter feeding in the yak calves.
Collapse
Affiliation(s)
- Yin Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Hongze Xia
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Qien Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Deyu Yang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- *Correspondence: Shujie Liu,
| | - Zhanhong Cui
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Zhanhong Cui,
| |
Collapse
|
3
|
Ma J, Shah AM, Wang Z, Hu R, Zou H, Wang X, Cao G, Peng Q, Xue B, Wang L, Zhao S, Kong X. Comparing the gastrointestinal barrier function between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. PeerJ 2020; 8:e9851. [PMID: 32953274 PMCID: PMC7474896 DOI: 10.7717/peerj.9851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yak (Bos grunniens) is an ancient bovine species on the Qinghai-Tibetan Plateau. Due to extremely harsh condition in the plateau, the growth retardation of yaks commonly exist, which can reduce the incomes of herdsman. The gastrointestinal barrier function plays a vital role in the absorption of nutrients and healthy growth. Functional deficiencies of the gastrointestinal barrier may be one of the contributors for yaks with growth retardation. Methods To this end, we compared the growth performance and gastrointestinal barrier function of growth-retarded (GRY) and normal yaks (GNY) based on average daily gain (ADG), serum parameters, tissue slice, real-time PCR, and western blotting, with eight yaks in each group. Results GRY exhibited lower (P < 0.05) average daily gain as compared to GNY. The diamine oxidase, D-lactic acid, and lipopolysaccharide concentrations in the serum of GRY were significantly higher (P < 0.05) than those of GNY. Compared to GNY, the papillae height in the rumen of GRY exhibited lower (P = 0.004). In jejunum, with the exception of higher villus height, width, and surface area in GNY, numerical difference (P = 0.61) was detected between two groups for crypt depth. Both in rumen and jejunum, the mRNA expression of interleukin-1beta in GRY was markedly higher (P < 0.05) than that in GNY, but an opposite trend was found in interleukin-10 expression. Moreover, GRY showed a higher (P < 0.05) tumor necrosis factor-alpha mRNA expression in the rumen. The claudin-1 (CLDN1), occludin (OCLN), and zonula occludens-1 (ZO1) expressions of GRY in rumen and jejunum were significantly down-regulated (P < 0.05) as compared to GNY. The correlation analysis identified that in rumen and jejunum, there was a positive correlation between interleukin-10 and CLDN1, OCLN, and ZO1 mRNA expressions, but the tumor necrosis factor-alpha was negatively correlated with CLDN1, OCLN, and ZO1. In the rumen, the ADG was positively correlated with papillae surface area, and a same relationship between ADG and CLDN1, OCLN, and ZO1 expressions was found. Conclusion The results indicated that the ruminal and jejunal barrier functions of GRY are disrupted as compared to GNY. In addition, our study provides a potential solution for promoting the growth of GRY by enhancing the gastrointestinal barrier function.
Collapse
Affiliation(s)
- Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xueying Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guang Cao
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Suonan Zhao
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| | - Xiangying Kong
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| |
Collapse
|