1
|
Abdul Kareem ZG, Yasser Al-Zamily OM, Al-Khafaji NSK. Purification and characterization of α-galactosidase isolated from Klebsiella pneumoniae in the human oral cavity. Int J Biol Macromol 2024; 261:129550. [PMID: 38244734 DOI: 10.1016/j.ijbiomac.2024.129550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.
Collapse
Affiliation(s)
- Zainab G Abdul Kareem
- Department of Chemistry, College of Science, University of Babylon, Iraq; Department of Basic Science, College of Dentistry, University of Babylon, Iraq.
| | | | | |
Collapse
|
2
|
Menon A, Pandurangan Maragatham V, Samuel M, Arunraj R. Properties and applications of α-galactosidase in agricultural waste processing and secondary agricultural process industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:21-31. [PMID: 37555350 DOI: 10.1002/jsfa.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Agriculture products form the foundation building blocks of our daily lives. Although they have been claimed to be renewable resources with a low carbon footprint, the agricultural community is constantly challenged to overcome two post-harvest bottlenecks: first, farm bio-waste, a substantial economic and environmental burden to the farming sector, and second, an inefficient agricultural processing sector, plagued by the need for significant energy input to generate the products. Both these sectors require extensive processing technologies that are demanding in their energy requirements and expensive. To address these issues, an enzyme(s)-based green chemistry is available to break down complex structures into bio-degradable compounds that source alternate energy with valuable by-products and co-products. α-Galactosidase is a widespread class of glycoside hydroxylases that hydrolyzes α-galactosyl moieties in simple and complex oligo and polysaccharides, glycolipids, and glycoproteins. As a result of its growing importance, in this review we discuss the source of the enzyme, production and purification systems, and enzyme properties. We also elaborate on the enzyme's potential in agricultural bio-waste management, secondary agricultural industries like sugar refining, soymilk derivatives, food and confectionery, and animal feed processing. Insight into this vital enzyme will provide new avenues for less expensive green chemistry-based secondary agricultural processing and agricultural sustainability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anindita Menon
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Vetriselvi Pandurangan Maragatham
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Marcus Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Rex Arunraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| |
Collapse
|
3
|
Anisha GS. Biopharmaceutical applications of α-galactosidases. Biotechnol Appl Biochem 2023; 70:257-267. [PMID: 35436353 DOI: 10.1002/bab.2349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
α-Galactosidases are exoglycosidases that are active on galactose-containing side chains in oligosaccharides, polysaccharides, glycolipids, and glycoproteins. α-Galactosidases are gaining increased interest in human medicine, especially in the enzyme replacement therapy for Fabry's disease. α-Galactosidases with regioselectivity toward α-1,3-linked galactose find application in xenotransplantation and blood group transformation. The use of α-galactosidases as a therapeutic agent in alleviating the postprandial symptoms of irritable bowel syndrome is much acclaimed. The excellent therapeutic applications of α-galactosidases have led to an upwelling of worldwide research interventions to identify novel α-galactosidases with improved catalytic efficiency. In addition to these therapeutic applications, α-galactosidases also have interesting applications in the industrial sectors like food, feed, probiotics, sugar, and paper pulp. The current review focuses on the diverse therapeutic applications of α-galactosidases and their prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Bhatia S, Batra N, Singh J. Production, purification, characterization, and applications of α-galactosidase from Bacillus flexus JS27 isolated from Manikaran hot springs. Prep Biochem Biotechnol 2022; 53:366-383. [PMID: 35801491 DOI: 10.1080/10826068.2022.2095572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
α-Galactosidase hydrolyzes the α-1,6-linkage present at the non-reducing end of the sugars and results in the release of galactosyl residue from oligosaccharides like melibiose, raffinose, stachyose, etc. In the present study we report, α-galactosidase from Bacillus flexus isolated from Manikaran hot springs (India). Maximum enzyme production was obtained in guar gum and soybean meal after 72 h at 150 rpm. While, the temperature/pH of production was optimized at 50 °C and 7.0, respectively. Isoenzymes (α-gal I and II) were obtained and characterized based on temperature/pH optima along with their stability profile. JS27 α-Gal II was purified with a final purification fold of 11.54. Native and SDS-PAGE were used to determine the molecular weight of the enzyme as 86 and 41 kDa, respectively, indicating its homodimeric form. JS27 α-Gal II showed optimum enzyme activity at 55 °C and pH 7 (10 min). The enzyme displayed Km value of 2.3809 mM and Vmax of 2.0 × 104 µmol/min/ml with pNPG as substrate. JS27 α-Gal II demonstrated substrate hydrolysis and simultaneous formation of transgalactosylation products (α-GOS) with numerous substrates (sugar/sugar alcohols, oligosaccharides, and complex carbohydrates) which were verified by TLC and HPLC analysis. α-GOS are significant functional food ingredients and can be explored as prebiotics.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India.,Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Salhi A, Essack M, Radovanovic A, Marchand B, Bougouffa S, Antunes A, Simoes MF, Lafi FF, Motwalli OA, Bokhari A, Malas T, Amoudi SA, Othum G, Allam I, Mineta K, Gao X, Hoehndorf R, C Archer JA, Gojobori T, Bajic VB. DESM: portal for microbial knowledge exploration systems. Nucleic Acids Res 2015; 44:D624-33. [PMID: 26546514 PMCID: PMC4702830 DOI: 10.1093/nar/gkv1147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andre Antunes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Marta Filipa Simoes
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Olaa A Motwalli
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- King Abdullah University of Science and Technology (KAUST), Center for Desert Agriculture (CDA), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tariq Malas
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Soha Al Amoudi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ghofran Othum
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Intikhab Allam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - John A C Archer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|