1
|
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, Zhu M. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals (Basel) 2024; 14:3111. [PMID: 39518834 PMCID: PMC11544815 DOI: 10.3390/ani14213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plumage color is a key trait for identifying waterfowl breeds with significant economic importance. A white-feathered group has recently emerged within the native Matahu duck population, presenting an opportunity for breeding new lines. However, the genetic basis for this plumage variation is still unknown, necessitating further research. This study aims to identify the genetic mechanisms underlying the emergence of white-feathered individuals in the Matahu duck population through combined genome and transcriptome analysis, providing insights for selective breeding and the development of new white-feathered lines. In this study, a total of 1344 selected genes and 1406 significantly differentially expressed genes were identified through selection signal analysis and transcriptomic analysis, respectively. The functional enrichment of these genes revealed several key signaling pathways, including those related to cGMP-PKG, cAMP, PI3K-Akt, and MAPK. Furthermore, important candidate genes involved in melanin biosynthesis, such as MITF, MC1R, TYR, TYRP1, and ABCB6, were identified. Notably, 107 genes were detected by both methods, and, among these, DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9 are suggested to play a role in melanin formation and potentially influence plumage traits. Through the integrative approach combining genomic selection signals and transcriptomic analyses, we identified several candidate genes directly associated with plumage color, including MITF, TYR, TYRP1, and MC1R, along with multiple signaling pathways linked to melanin formation. We hypothesize that the expression of DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9, detected by both methods, may be closely related to the regulation of plumage color traits. These findings provide a foundational basis for further research aimed at elucidating the genetic mechanisms governing plumage color variation in ducks.
Collapse
Affiliation(s)
- Pengwei Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Liu Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yadi Jing
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Meixia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chao Qi
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Xin Zhang
- Jining Animal Husbandry and Veterinary Career Development Centre, Jining 272002, China
| | - Xiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Zhansheng Liu
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Shuer Zhang
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Tripathy PS, Dash SS, Devi NC, Mandal SC, Pandey PK, Parhi J, Behera BK, Khatei A. Unveiling the molecular mechanisms of pigmentation control in Queen Loach, Botia dario (Hamilton, 1822): Insights from sesame seed and marigold-induced antityrosinase effects. J Anim Physiol Anim Nutr (Berl) 2024; 108:1453-1467. [PMID: 38767315 DOI: 10.1111/jpn.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Fish pigmentation study can reveal understandings in dermatological research based on functional genomics. Cultured ornamental fish becomes dull coloured and antityrosinase activity through sesame seed may enhance skin colour, which has not been studied. Botia dario is an indigenous fish, having ornamental and aesthetic value and can be studied as a model for fish pigmentation genetics. In this study, fish specimens were fed with 15% marigold petal meal along with 5, 10 and 15% w/w sesame seed in diet. Pigmentation genes, that is, tyr, tyrp1a, asip1, gnaq, kitlga, mc1r, mitf, pax7a, rab38, slc7a11, sox9a, sox10, csf1r, bcdo2 and gsta2 in skin and immunogens, that is, il20, nramp, tlr9 and trail in kidney were studied. Gene expression in tissues revealed enhanced pigmentation and immunity as well as the role of tyr, tyrp1a and asip1 in pigmentation. Immunogenes and blood parameters confirmed the best pigmentation diet. Colorimetric analysis also showed the enhancement of pigmentation. Insights from sesame seed and marigold-induced antityrosinase effects will be applied in aquaculture to develop natural, dietary formulations that will enhance pigmentation in ornamental fish, leading to improved skin colour and market value.
Collapse
Affiliation(s)
- Partha Sarathi Tripathy
- Department of Fisheries Resource Management, College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Soumya Shephalika Dash
- Department of Agricultural Entomology, Palli Shiksha Bhavana, Visva Bharati, Bolpur, West Bengal, India
| | - Ningthoujam Chaoba Devi
- Department of Fish Genetics and Breeding, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Sagar Chandra Mandal
- Department of Fish Genetics and Breeding, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Pramod Kumar Pandey
- Fish Genetics, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| | - Janmejay Parhi
- Department of Fish Genetics and Breeding, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bijay Kumar Behera
- Department of Fisheries Resource Management, College of Fisheries, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Ananya Khatei
- Fish Genetics, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Uttarakhand, India
| |
Collapse
|
3
|
Huo L, Zhang X, Pang Y, Qi Y, Ren S, Wu F, Shang Y, Xi J. Expression and Mutation of SLC45A2 Affects Iris Color in Quail. J Poult Sci 2024; 61:2024015. [PMID: 38818526 PMCID: PMC11130394 DOI: 10.2141/jpsa.2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Iris color is a prominent phenotypic feature of quail. To understand the mechanism of melanin deposition related to quail iris color, iris tissues were selected from Beijing white and Chinese yellow quail for transcriptome analysis. Differentially expressed genes (DEGs) associated with pigmentation were identified using RNA sequencing and validated by quantitative real-time polymerase chain reaction (RT-qPCR). The identified single nucleotide polymorphisms were studied using bioinformatics and iris color correlation analyses. A total of 485 DEGs were obtained, with 223 upregulated and 262 downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. Thirty-two genes were annotated using the GO database. Three important pigment synthesis pathways (Notch signaling, melanogenesis, and tyrosine metabolism) were identified in quail iris tissue (P < 0.05). The expression levels of solute carrier family 45 member 2 (SLC45A2), tyrosinase-related protein 1, vitamin D receptor, opsin 5, and docking protein 5 were significantly different between Beijing white and Chinese yellow quail, as verified by RT-qPCR. The c.1061C>T mutation in SLC45A2, which caused a single amino acid change at position 354 (threonine to methionine), was significantly associated with iris color in Beijing white and Chinese yellow quail, and might be the main reason for the different iris colors between these two quail species.
Collapse
Affiliation(s)
- Linke Huo
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
- Luoyang Key Laboratory of Animal Genetics and Breeding,
Luoyang 471003, P.R. China
| | - Shiwei Ren
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and
Technology, Luoyang, 471003 He’nan, P.R. China
| |
Collapse
|
4
|
Ren S, Zhang X, Pang Y, Qi Y, Huo L, Wu F, Shang Y, Xi J. RNA sequencing analysis reveals that missense mutation in SOX10 is associated with iris color phenotype in quail. Anim Genet 2024; 55:79-86. [PMID: 37905379 DOI: 10.1111/age.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
To investigate the molecular mechanisms underlying the differences in iris color in quail, the transcriptome of iris tissue from black quail and Korean quail at day 10 of hatching was RNA sequenced in this study. The differentially expressed genes (DEGs) were screened, functionally annotated and enriched after the quality control and mapping of the raw data. RT-qPCR validation was performed using EIF2S3 as an internal reference gene. The screened SNPs were studied by bioinformatics analysis and iris color correlation analysis. The results showed that there were 425 upregulated genes and 364 downregulated genes in 789 DEGs. Gene Ontology (GO) enrichment analysis revealed that 139 DEGs were significantly enriched in 154 GO terms. The Kyoto Encyclopedia of Genes and Genomes enrichment results showed that the Notch signaling pathway, melanogenesis and tyrosine metabolism were associated with pigment synthesis (p < 0.05). The expression levels of the ASIP, MLPH, PMEL, TYR and SOX10 genes were significantly different in black quail iris and Korean quail iris, as verified by RT-qPCR. The SOX10 gene c.324G>C mutation, which caused the replacement of p.Glu108Asp, had a highly significant correlation with iris color in black quail and Korean quail, which may be one of the reasons for different in iris color between these two quail species.
Collapse
Affiliation(s)
- Shiwei Ren
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Youzhi Pang
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Yanxia Qi
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Linke Huo
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Fanghu Wu
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Yuanyuan Shang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Jinquan Xi
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Yuan Z, Zhang X, Pang Y, Qi Y. Association analysis of PMEL gene expression and single nucleotide polymorphism with plumage color in quail. Anim Biotechnol 2023; 34:5001-5010. [PMID: 37300547 DOI: 10.1080/10495398.2023.2221697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (p < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (p < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.
Collapse
Affiliation(s)
- Zhiwen Yuan
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| |
Collapse
|
6
|
Yuan Z, Zhang X, Pang Y, Qi Y, Wang Q, Hu Y, Zhao Y, Ren S, Huo L. Association analysis of melanophilin ( MLPH) gene expression and polymorphism with plumage color in quail. Arch Anim Breed 2023; 66:131-139. [PMID: 37124941 PMCID: PMC10134764 DOI: 10.5194/aab-66-131-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
We explore the relationship between the melanophilin (MLPH) gene and quail plumage color and provide a reference for subsequent quail plumage color breeding. In this experiment, real-time quantitative PCR (RT-qPCR) technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two single-nucleotide polymorphisms (SNPs) in the MLPH gene were screened based on the RNA-sequencing (RNA-Seq) data of skin tissues of Korean quail and Beijing white quail during the embryonic stage. Kompetitive allele-specific PCR (KASP) technology was used for genotyping in the resource population, and correlation analysis was carried out with the plumage color traits of quail. Finally, bioinformatics was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression level of the MLPH gene during embryonic development of Beijing white quail was significantly higher than that of Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (CC, CA and AA) of the Beijing white quail at the c.1807C > A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (GG, GA and AA) of the Beijing white quail at the c.2129G > A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). And there was a significant correlation between the c.1807C > A mutation site and the white plumage phenotype. Bioinformatics showed that SNP1 (c.1807C > A) was a neutral mutation and that SNP2 (c.2129G > A) was a deleterious mutation. The prediction of protein conservation showed that the mutation sites of coding proteins R603S and G710D caused by SNP1 (c.1807C > A) and SNP2 (c.2129G > A) were highly conserved.
Collapse
Affiliation(s)
- Zhiwen Yuan
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Xiaohui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Youzhi Pang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Yanxia Qi
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Qiankun Wang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Yunqi Hu
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Yiwei Zhao
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Shiwei Ren
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Linke Huo
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| |
Collapse
|
7
|
Guo Q, Jiang Y, Wang Z, Bi Y, Chen G, Bai H, Chang G. Genome-Wide Analysis Identifies Candidate Genes Encoding Feather Color in Ducks. Genes (Basel) 2022; 13:genes13071249. [PMID: 35886032 PMCID: PMC9317390 DOI: 10.3390/genes13071249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Comparative population genomics and genome-wide association studies (GWAS) offer opportunities to discover human-driven detectable signatures within the genome. From the point of view of evolutionary biology, the identification of genes associated with the domestication of traits is of interest for the elucidation of the selection of these traits. To this end, an F2 population of ducks, consisting of 275 ducks, was genotyped using a whole genome re-sequence containing 12.6 Mb single nucleotide polymorphisms (SNPs) and four plumage colors. GWAS was used to identify the candidate and potential SNPs of four plumage colors in ducks (white, spot, grey, and black plumage). In addition, FST and genetic diversity (π ratio) were used to screen signals of the selective sweep, which relate to the four plumage colors. Major genomic regions associated with white, spotted, and black feathers overlapped with their candidate selection regions, whereas no such overlap was observed with grey plumage. In addition, MITF and EDNRB2 are functional candidate genes that contribute to white and black plumage due to their indirect involvement in the melanogenesis pathway. This study provides new insights into the genetic factors that may influence the diversity of plumage color.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-187-9660-8824 (H.B.); +86-178-5197-5060 (G.C.)
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-187-9660-8824 (H.B.); +86-178-5197-5060 (G.C.)
| |
Collapse
|
8
|
Sex Identification of Feather Color in Geese and the Expression of Melanin in Embryonic Dorsal Skin Feather Follicles. Animals (Basel) 2022; 12:ani12111427. [PMID: 35681891 PMCID: PMC9179848 DOI: 10.3390/ani12111427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
In production practice, we have found that the gray and black down on the backs of the Holdobaggy goslings is usually darker in females than in males. Melanin is the key pigment affecting the color of poultry plumage. Therefore, to determine whether the darkness of the dorsal plumage of the Holdobaggy goslings is related to sex, we study the melanin in the feather follicles of the dorsal skin during the embryonic period. The feather follicle structure and melanin distribution on the dorsal surface of the goose embryo is observed by HE staining and melanin-specific staining. The melanin content in the feather follicles of the dorsal skin of goslings is determined by ELISA. The results showed that the melanin content is higher in female geese than in males (p < 0.05). In addition, we also analyze the mRNA and protein expression levels of melanin-related genes (TYRP1 and ASIP) by quantitative real-time PCR and Western blotting analysis. The results show that the mRNA expression level of TYRP1 is significantly higher in the females’ dorsal skin feather follicles (p < 0.05), while the mRNA expression level of ASIP is significantly higher in the dorsal skin feather follicles of male geese (p < 0.05). In conclusion, the difference between males and females in the color of the black feathers on the dorsal track of the Holdobaggy goslings is verified, and it is feasible to identify the sex by the initial plumage color.
Collapse
|
9
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
10
|
Ma S, Liu H, Wang J, Wang L, Xi Y, Liu Y, Xu Q, Hu J, Han C, Bai L, Li L, Wang J. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front Genet 2021; 12:627974. [PMID: 34956302 PMCID: PMC8692775 DOI: 10.3389/fgene.2021.627974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rubenstein DR, Corvelo A, MacManes MD, Maia R, Narzisi G, Rousaki A, Vandenabeele P, Shawkey MD, Solomon J. Feather Gene Expression Elucidates the Developmental Basis of Plumage Iridescence in African Starlings. J Hered 2021; 112:417-429. [PMID: 33885791 PMCID: PMC11502951 DOI: 10.1093/jhered/esab014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
- Center for Integrative Animal Behavior, Columbia University, New York, NY
| | | | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | | | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat, Ghent, Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| |
Collapse
|
12
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Nebel C, Sumasgutner P, Rodseth E, Ingle RA, Childs DZ, Curtis‐Scott O, Amar A. Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait. J Zool (1987) 2021. [DOI: 10.1111/jzo.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Nebel
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Biology University of Turku Turku Finland
| | - P. Sumasgutner
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Behavioral & Cognitive Biology Konrad Lorenz Research Centre (KLF) Core Facility for Behaviour and Cognition University of Vienna Vienna Austria
| | - E. Rodseth
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - R. A. Ingle
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - D. Z. Childs
- School of Biosciences University of Sheffield Sheffield UK
| | - O. Curtis‐Scott
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - A. Amar
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
| |
Collapse
|
14
|
Hu S, Bai S, Dai Y, Yang N, Li J, Zhang X, Wang F, Zhao B, Bao G, Chen Y, Wu X. Deubiquitination of MITF-M Regulates Melanocytes Proliferation and Apoptosis. Front Mol Biosci 2021; 8:692724. [PMID: 34179099 PMCID: PMC8221579 DOI: 10.3389/fmolb.2021.692724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Microphthalmia-associated transcription factor-M (MITF-M) is the key gene in the proliferation and differentiation of melanocytes, which undergoes an array of post-translation modifications. As shown in our previous study, deubiquitinase USP13 is directly involved in melanogenesis. However, it is still ambiguous that the effect of USP13-mediated MITF-M expression on melanocytes proliferation and apoptosis. Herein, we found that MITF-M overexpressing melanocytes showed high cell proliferation, reduced apoptosis, and increased melanin levels. Besides, melanin-related genes, TYR, DCT, GPNMB, and PMEL, were significantly up-regulated in MITF-M overexpressing melanocytes. Furthermore, Exogenous USP13 significantly upregulated the endogenous MITF-M protein level, downregulated USP13 significantly inhibited MITF-M protein levels, without altering MITF-M mRNA expression. In addition, USP13 upregulation mitigated the MITF-M degradation and significantly increased the half-life of MITF-M. Also, USP13 stabilized the exogenous MITF protein levels. In conclusion, the MITF-M level was regulated by USP13 deubiquitinase in melanocytes, affecting melanocytes proliferation and apoptosis. This study provides the theoretical basis for coat color transformation that could be useful in the development of the new breed in fur animals.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guolian Bao
- Animal Husbandry and Veterinary Research Institute Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Mandal SC, Tripathy PS, Khatei A, Behera DU, Ghosh A, Pandey PK, Parhi J. Genetics of colour variation in wild versus cultured queen loach, Botia dario (Hamilton, 1822). Genomics 2020; 112:3256-3267. [DOI: 10.1016/j.ygeno.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
|
16
|
Li K, Zhao N, Zhang B, Jia L, Liu K, Wang Q, He X, Bao B. Identification and characterization of the melanocortin 1 receptor gene (MC1R) in hypermelanistic Chinese tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:881-890. [PMID: 31909442 DOI: 10.1007/s10695-019-00758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a flatfish with distinctive asymmetry in its body coloration. The melanism (hyperpigmentation) in both the blind side and ocular side of C. semilaevis gives it an extremely low commercial value. However, the fundamental molecular mechanism of this melanism remains unclear. Melanocortin 1 receptor (MC1R), a GTP-binding protein-coupled receptor, is considered to play a vital role in the physiology of the vertebrate pigment system. In order to confirm the contribution of MC1R to the body coloration of C. semilaevis, the expression levels of Mc1r mRNA were measured in seven tissue types at different developmental stages of normal and melanistic C. semilaevis. The expression levels of Mc1r mRNA in the heart, brain, liver, kidney, ocular-side skin, and blind-side skin of melanistic C. semilaevis were significantly higher than that of normal C. semilaevis in all developmental stages. Moreover, the knocking down of Mc1r in the C. semilaevis liver cell line (HTLC) increased the expression of the downstream genes microphthalmia transcription factor (Mitf) and tyrosinase-related protein 1 (Tyrp1) in the pigmentation pathway. Thus, the present data suggest that MC1R might play important roles in Tyrp1- and Mitf-mediated pigment synthesis in C. semilaevis.
Collapse
Affiliation(s)
- Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Na Zhao
- Tianjin Haolingsaiao Biotechnology Co, Ltd, Tianjin, China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Qunshan Wang
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
17
|
Walsh J, Clucas GV, MacManes MD, Thomas WK, Kovach AI. Divergent selection and drift shape the genomes of two avian sister species spanning a saline-freshwater ecotone. Ecol Evol 2019; 9:13477-13494. [PMID: 31871659 PMCID: PMC6912898 DOI: 10.1002/ece3.5804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The role of species divergence due to ecologically based divergent selection-or ecological speciation-in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline-freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes-the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)-to evaluate the influence of selective and demographic processes in shaping genome-wide patterns of divergence. Genome-wide divergence between these two recently diverged sister species was notably high (genome-wide F ST = 0.32). Against a background of high genome-wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism-all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.
Collapse
Affiliation(s)
- Jennifer Walsh
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Fuller Evolutionary Biology ProgramCornell Laboratory of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - Gemma V. Clucas
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
- Present address:
Cornell Lab of OrnithologyIthacaNYUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - W. Kelley Thomas
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNHUSA
- Hubbard Center for Genome StudiesDurhamNHUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
18
|
Coetzer WG, Grobler JP. Genetic variation among different springbok (Antidorcas marsupialis) colour variants. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Liu BW, Li ZX, He ZG, Wang Q, Liu C, Zhang XW, Yang H, Xiang HB. Altered expression of itch‑related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch. Int J Mol Med 2019; 44:835-846. [PMID: 31257468 PMCID: PMC6657970 DOI: 10.3892/ijmm.2019.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, we focused on several itch-related molecules and receptors in the spinal cord with the goal of clarifying the specific mediators that regulate itch sensation. We investigated the involvement of serotonin receptors, opioid receptors, glia cell markers and chemokines (ligands and receptors) in models of acetone/ether/water (AEW)- and diphenylcyclopropenone (DCP)-induced chronic itch. Using reverse transcription-quantitative polymerase chain reaction, we examined the expression profiles of these mediators in the lower cervical spinal cord (C5-8) of two models of chronic itch. We found that the gene expression levels of opioid receptor mu 1 (Oprm1), 5-hydroxytryptamine receptor 1A (Htr1a) and 5-hydroxytryptamine receptor 6 (Htr6) were upregulated. Among the chemokines, the expression levels of C-C motif chemokine ligand (Ccl)21, Cxcl3 and Cxcl16 and their receptors, Ccr7, Cxcr2 and Cxcr6, were simultaneously upregulated in the spinal cords of the mice in both models of chronic itch. By contrast, the expression levels of Ccl2, Ccl3, Ccl4 and Ccl22 were downregulated. These findings indicate that multiple mediators, such as chemokines in the spinal cord, are altered and may be central candidates in further research into the mechanisms involved in the development of chronic itch.
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xian-Wei Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
20
|
Li D, Wang X, Fu Y, Zhang C, Cao Y, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X. Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Front Genet 2019; 10:457. [PMID: 31156710 PMCID: PMC6529781 DOI: 10.3389/fgene.2019.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Wu Y, Zhang Y, Hou Z, Fan G, Pi J, Sun S, Chen J, Liu H, Du X, Shen J, Hu G, Chen W, Pan A, Yin P, Chen X, Pu Y, Zhang H, Liang Z, Jian J, Zhang H, Wu B, Sun J, Chen J, Tao H, Yang T, Xiao H, Yang H, Zheng C, Bai M, Fang X, Burt DW, Wang W, Li Q, Xu X, Li C, Yang H, Wang J, Yang N, Liu X, Du J. Population genomic data reveal genes related to important traits of quail. Gigascience 2018; 7:4995262. [PMID: 29762663 PMCID: PMC5961004 DOI: 10.1093/gigascience/giy049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Japanese quail (Coturnix japonica), a recently domesticated poultry species, is important not only as an agricultural product, but also as a model bird species for genetic research. However, most of the biological questions concerning genomics, phylogenetics, and genetics of some important economic traits have not been answered. It is thus necessary to complete a high-quality genome sequence as well as a series of comparative genomics, evolution, and functional studies. Results Here, we present a quail genome assembly spanning 1.04 Gb with 86.63% of sequences anchored to 30 chromosomes (28 autosomes and 2 sex chromosomes Z/W). Our genomic data have resolved the long-term debate of phylogeny among Perdicinae (Japanese quail), Meleagridinae (turkey), and Phasianinae (chicken). Comparative genomics and functional genomic data found that four candidate genes involved in early maturation had experienced positive selection, and one of them encodes follicle stimulating hormone beta (FSHβ), which is correlated with different FSHβ levels in quail and chicken. We re-sequenced 31 quails (10 wild, 11 egg-type, and 10 meat-type) and identified 18 and 26 candidate selective sweep regions in the egg-type and meat-type lines, respectively. That only one of them is shared between egg-type and meat-type lines suggests that they were subject to an independent selection. We also detected a haplotype on chromosome Z, which was closely linked with maroon/yellow plumage in quail using population resequencing and a genome-wide association study. This haplotype block will be useful for quail breeding programs. Conclusions This study provided a high-quality quail reference genome, identified quail-specific genes, and resolved quail phylogeny. We have identified genes related to quail early maturation and a marker for plumage color, which is significant for quail breeding. These results will facilitate biological discovery in quails and help us elucidate the evolutionary processes within the Phasianidae family.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China.,Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province,Wuhan 430064, China.,Hubei Innovation Center of Agricultural Science and Technology, Wuhan, Hubei, 430064, China
| | - Yaolei Zhang
- BGI-Shenzhen, Shenzhen 518083, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China; Agricultural University, Beijing 100193, China
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen 518083, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China.,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jiang Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Huaqiao Liu
- Hubei Shendan Healthy Food Co., Ltd., Wuhan 430206, China
| | - Xiao Du
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Gang Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | | | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Pingping Yin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | | | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | | | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jing Sun
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | | | - Hu Tao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Ting Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Huan Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chuanwei Zheng
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | | | | | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, China
| | - Qingyi Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Chengfeng Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China; Agricultural University, Beijing 100193, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| |
Collapse
|
23
|
Li G, Xiong H, Xi D, Memon S, Wang L, Liu X, Deng W. An examination of melanogenic traits and <i>TYRP1</i> polymorphism in Nanping and Romney Marsh sheep breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-131-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The effects of mutations of the gene for tyrosinase-related
protein 1 (TYRP1) on the black muscles and coat color in Nanping
black-boned sheep were investigated. Tyrosinase activity and melanin content
in plasma were measured and compared in three random groups of sheep: Nanping
black-boned (101 heads), Nanping normal (106 heads) and Romney Marsh sheep
(82 heads, Ovis aries). Eight exons and their partial flanking
regions of the TYRP1 gene were amplified. Six intronic mutations and
six exonic polymorphisms including two non-synonymous mutations [c.203C > T
(p.A68V) and c.1202T > C (p.V401A)] were identified. Using a
bi-directional polymerase chain reaction allele-specific amplification
(bi-PASA) of the mutation c.203C > T it was shown that the frequencies of
allele C in the Nanping black-boned, Nanping normal and Romney Marsh sheep
were respectively 0.955, 0.967 and 0.744. For the mutation c.1202T > C,
the frequencies of allele T in the three populations of sheep were
respectively 0.777, 0.745 and 0.793 as measured using the single-strand
conformation polymorphism. When the data from sheep of all three populations
with the CC genotype of SNP c.203C > T were pooled, it was found that there
was significantly higher (P < 0.05) tyrosinase activity, content of
alkali-soluble melanin and ratio of eumelanin : total melanin than
in the plasma of sheep with the CT and TT genotypes. This was not so within each
of the three groups of sheep. No significant effect of the TRYP1
genotype on coat color was found. Further studies will be necessary to
determine the cause of the black traits in Nanping black-boned sheep.
Collapse
|
24
|
Galván I, Solano F. Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. Int J Mol Sci 2016; 17:520. [PMID: 27070583 PMCID: PMC4848976 DOI: 10.3390/ijms17040520] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022] Open
Abstract
Melanins are the ubiquitous pigments distributed in nature. They are one of the main pigments responsible for colors in living cells. Birds are among the most diverse animals regarding melanin-based coloration, especially in the plumage, although they also pigment bare parts of the integument. This review is devoted to the main characteristics of bird melanins, including updated views of the formation and nature of melanin granules, whose interest has been raised in the last years for inferring the color of extinct birds and non-avian theropod dinosaurs using resistant fossil feathers. The molecular structure of the two main types of melanin, eumelanin and pheomelanin, and the environmental and genetic factors that regulate avian melanogenesis are also presented, establishing the main relationship between them. Finally, the special functions of melanin in bird feathers are also discussed, emphasizing the aspects more closely related to these animals, such as honest signaling, and the factors that may drive the evolution of pheomelanin and pheomelanin-based color traits, an issue for which birds have been pioneer study models.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station-CSIC, 41092 Sevilla, Spain.
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology B & Immunology, School of Medicine and IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
25
|
Yin Z, Zhao X, Wang Z, Wang L, Li Z, Bai R, Zhao M, Pang Q. Identification of differentially expressed Gnαs and Gnα11 in sheep (Ovis aries) skins associated with white and black coat colors. Acta Histochem 2016; 118:170-5. [PMID: 26767972 DOI: 10.1016/j.acthis.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Guanine nucleotide-binding protein subunit alpha-s (Gnαs) and guanine nucleotide-binding protein subunit alpha-11 (Gnα11) play an important role in coat color formation. To improve our understanding of Gnαs and Gnα11 expression levels and pattern in the skin of black sheep (Ovis aries) compared with white sheep, we analyzed the expression levels through quantitative real time PCR (qPCR) and Western blot, immunohistochemistry and immunofluorescence. qPCR and Western blot results suggested that Gnαs and Gnα11 were significantly expressed at high levels in black sheep skin compared with the white sheep skin. Gnα11 expression was higher than Gnαs expression in both skin colors, transcripts and protein exhibited the same expression pattern in white and black sheep skins. Immunohistochemical results revealed that Gnαs and Gnα11 were localized in the outer root sheath of hair follicle in sheep. Furthermore, the expression of Gnα11 in outer root sheath of hair follicle was stronger than that in Gnαs. Immunofluorescencence further demonstrated that signals of Gnαs and Gnα11 were detected in outer root sheath and hair papilla. These results provide a novel insight into the role of Gnαs and Gnα11 in the regulation of sheep coat color.
Collapse
|
26
|
Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ, Lai YT, Mao CT, Lu MYJ, Chen DR, Lin ZS, Yang KJ, Sha YA, Tu TC, Chen CF, Chuong CM, Li WH. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 2015; 16:756. [PMID: 26445093 PMCID: PMC4594745 DOI: 10.1186/s12864-015-1966-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
Background Feathers have diverse forms with hierarchical branching patterns and are an excellent model for studying the development and evolution of morphological traits. The complex structure of feathers allows for various types of morphological changes to occur. The genetic basis of the structural differences between different parts of a feather and between different types of feather is a fundamental question in the study of feather diversity, yet there is only limited relevant information for gene expression during feather development. Results We conducted transcriptomic analysis of five zones of feather morphologies from two feather types at different times during their regeneration after plucking. The expression profiles of genes associated with the development of feather structure were examined. We compared the gene expression patterns in different types of feathers and different portions of a feather and identified morphotype-specific gene expression patterns. Many candidate genes were identified for growth control, morphogenesis, or the differentiation of specific structures of different feather types. Conclusion This study laid the ground work for studying the evolutionary origin and diversification of feathers as abundant data were produced for the study of feather morphogenesis. It significantly increased our understanding of the complex molecular and cellular events in feather development processes and provided a foundation for future studies on the development of other skin appendages. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1966-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Siang Ng
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chih-Kuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Siao-Man Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jiun-Jie Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Yu-Ting Lai
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chi-Tang Mao
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Di-Rong Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ze-Shiang Lin
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Kai-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Yuan-An Sha
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Tsung-Che Tu
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, 40227, Taiwan. .,Integrative Stem Cell Center, China Medical University, Taichung, 40402, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics (iEGG Center), National Chung Hsing University, Taichung, 40227, Taiwan. .,Integrative Stem Cell Center, China Medical University, Taichung, 40402, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Cornetti L, Valente LM, Dunning LT, Quan X, Black RA, Hébert O, Savolainen V. The Genome of the "Great Speciator" Provides Insights into Bird Diversification. Genome Biol Evol 2015; 7:2680-91. [PMID: 26338191 PMCID: PMC4607525 DOI: 10.1093/gbe/evv168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the "great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Luis M Valente
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Luke T Dunning
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Xueping Quan
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Richard A Black
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom Royal Society for the Protection of Birds, Pavilion View, Brighton, Bedfordshire, United Kingdom NERC Biomolecular Analysis Facility (NBAF) Department of Animal & Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Olivier Hébert
- Waco me Wela Association, Tribu de Luecila, Lifou, New Caledonia
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
28
|
Effects of dietary copper on elemental balance, plasma minerals and serum biochemical parameters of growing-furring male mink ( Mustela vison). ACTA ACUST UNITED AC 2015; 1:36-40. [PMID: 29766988 PMCID: PMC5884470 DOI: 10.1016/j.aninu.2015.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022]
Abstract
The objectives of this study were to study the effects of different levels of dietary copper on copper and zinc balance, plasma minerals and serum biochemical parameters of mink in the growing-furring periods. One hundred and five standard dark male mink were randomly assigned to seven groups with the following dietary treatments: basal diet with no supplemental Cu (Control); basal diet supplemented with either 6, 12, 24, 48, 96, or 192 mg/kg Cu from copper sulfate, respectively. The average daily gain (ADG) linearly (P = 0.0026, P = 0.0006) responded to increasing levels of Cu; maximal growth was seen in the Cu24 group. Feed efficiency tended to improve with the increase of dietary copper level (linear P = 0.0010, quad, P = 0.0011). Fecal copper, urinary copper, retention copper responded in a linear (P < 0.05) fashion with increasing level of Cu. The effect of level of Cu was linear (P < 0.001) for plasma Cu concentration. The serum glutamic-oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities were increased linearly (P < 0.05) with dose of Cu, but serum total protein (TP) and albumin (ALB) concentrations decreased linearly (P < 0.05) as dietary copper levels increased. Effect of level of Cu was linear (P < 0.001) for serum ceruloplasmin (CER) concentration or Cu-Zn superoxide dismutase (Cu-Zn SOD) activity. Supplemental dose of Cu linearly decreased serum triglyceride (TG) (P = 0.011) and total cholesterol (TC) (P = 0.007). Our results indicated that the activity of Cu-dependent enzymes was enhanced by increasing dietary Cu concentration and that supplementation of Cu in the diet of mink could alter the plasma lipid profile and copper concentration.
Collapse
|