Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling.
Acta Pharmacol Sin 2014;
35:1129-36. [PMID:
25087996 DOI:
10.1038/aps.2014.10]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/14/2014] [Indexed: 01/30/2023] Open
Abstract
AIM
To investigate the mechanisms of anti-atherosclerotic action of ezetimibe in rat vascular smooth muscle cells (VSMCs) in vitro.
METHODS
VSMCs of SD rats were cultured in the presence of Chol:MβCD (10 μg/mL) for 72 h, and intracellular lipid droplets and cholesterol levels were evaluated using Oil Red O staining, HPLC and Enzymatic Fluorescence Assay, respectively. The expression of caveolin-1, sterol response element-binding protein-1 (SREBP-1) and ERK1/2 were analyzed using Western blot assays. Translocation of SREBP-1 and ERK1/2 was detected with immunofluorescence.
RESULTS
Treatment with Chol:MβCD dramatically increased the cellular levels of total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) in VSMCs, which led to the formation of foam cells. Furthermore, Chol:MβCD treatment significantly decreased the expression of caveolin-1, and stimulated the expression and nuclear translocation of SREBP-1 in VSMCs. Co-treatment with ezetimibe (3 μmol/L) significantly decreased the cellular levels of TC, CE and FC, which was accompanied by elevation of caveolin-1 expression, and by a reduction of SREBP-1 expression and nuclear translocation. Co-treatment with ezetimibe dose-dependently decreased the expression of phosphor-ERK1/2 (p-ERK1/2) in VSMCs. The ERK1/2 inhibitor PD98059 (50 μmol/L) altered the cholesterol level and the expression of p-ERK1/2, SREBP-1 and caveolin-1 in the same manner as ezetimibe did.
CONCLUSION
Ezetimibe suppresses cholesterol accumulation in rat VSMCs in vitro by regulating SREBP-1 and caveolin-1 expression, possibly via the MAPK signaling pathway.
Collapse