1
|
Barbosa-Gouveia S, Fernández-Crespo S, Lazaré-Iglesias H, González-Quintela A, Vázquez-Agra N, Hermida-Ameijeiras Á. Association of a Novel Homozygous Variant in ABCA1 Gene with Tangier Disease. J Clin Med 2023; 12:jcm12072596. [PMID: 37048678 PMCID: PMC10094818 DOI: 10.3390/jcm12072596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Tangier disease (TD) is a rare autosomal recessive disorder caused by a variant in the ABCA1 gene, characterized by significantly reduced levels of plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-I). TD typically leads to accumulation of cholesterol in the peripheral tissues and early coronary disease but with highly variable clinical expression. Herein, we describe a case study of a 59-year-old male patient with features typical of TD, in whom a likely pathogenic variant in the ABCA1 gene was identified by whole-exome sequencing (WES), identified for the first time as homozygous (NM_005502.4: c.4799A>G (p. His1600Arg)). In silico analysis including MutationTaster and DANN score were used to predict the pathogenicity of the variant and a protein model generated by SWISS-MODEL was built to determine how the homozygous variant detected in our patient may change the protein structure and impact on its function. This case study describes a homozygous variant of the ABCA1 gene, which is responsible for a severe form of TD and underlines the importance of using bioinformatics and genomics for linking genotype to phenotype and better understanding and accounting for the functional impact of genetic variations.
Collapse
|
2
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
3
|
Alavizadeh NS, Rashidlamir A, Hejazi SM. Effect of Eight Weeks of Aerobic and Aerobic-Resistance Trainings after Coronary Artery Bypass Grafting on Expression of CCL2 and CCL5 in Middle-Aged Men. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
4
|
Nishida Y, Hachiya T, Hara M, Shimanoe C, Tanaka K, Sutoh Y, Shimizu A, Hishida A, Tsukamoto M, Kadomatsu Y, Oze I, Koyanagi YN, Kuriyama N, Koyama T, Ibusuki R, Takezaki T, Ikezaki H, Furusyo N, Takashima N, Kadota A, Uemura H, Katsuura-Kamano S, Suzuki S, Nakagawa-Senda H, Kuriki K, Mikami H, Nakamura Y, Momozawa Y, Kubo M, Nakatochi M, Naito M, Wakai K. The interaction between ABCA1 polymorphism and physical activity on the HDL-cholesterol levels in a Japanese population. J Lipid Res 2020; 61:86-94. [PMID: 31694877 PMCID: PMC6939595 DOI: 10.1194/jlr.p091546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Few studies have investigated the interactions between HDL-C-related SNPs identified by genome-wide association (GWA) study and physical activity (PA) on HDL-C. First, we conducted a sex-stratified GWA study in a discovery sample (2,231 men and 2,431 women) and replication sample (2,599 men and 3,109 women) to identify SNPs influencing log-transformed HDL-C in Japanese participants in the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. We also replicated previously reported HDL-C-related SNPs in a combined (discovery plus replication) sample (4,830 men and 5,540 women). We then analyzed the interactions of the HDL-C-related SNPs with PA on HDL-C. The sex-stratified GWA analyses identified 11 and 10 HDL-C-related SNPs in men and women as targets for an interaction analysis. Among these, only one interaction of ABCA1 rs1883025 with PA was statistically significant in men, after Bonferroni correction [P-interaction = 0.001 (α = 0.05/21 = 0.002)]. The per-major-allele (C allele) increase in log-transformed HDL-C was lost in men with low PA (β = 0.008) compared with those with medium (β = 0.032) or high PA (β = 0.034). These findings suggest that the benefit of carrying a C allele of ABCA1 rs1883025 on enhancing HDL-C may be attenuated in inactive men.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Asahi Hishida
- Departments of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mineko Tsukamoto
- Departments of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kadomatsu
- Departments of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Isao Oze
- Divisions of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuriko N Koyanagi
- Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Ikezaki
- Department of Environmental Medicine and Infectious Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norihiro Furusyo
- Department of Environmental Medicine and Infectious Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan; Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Kadota
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Hirokazu Uemura
- Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Nakagawa-Senda
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Nakatochi
- Division of Data Science, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Mariko Naito
- Departments of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Wakai
- Departments of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Rahmati-Ahmadabad S, Azarbayjani MA, Farzanegi P, Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats. Eur J Prev Cardiol 2019; 28:692-701. [PMID: 33611472 DOI: 10.1177/2047487319887828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present study compares the effect of high-intensity interval training (HIIT; 18 min) and moderate-intensity continuous training (MIT; 1 h) on reverse cholesterol transport (RCT) elements in obese subjects. METHODS Thirty adult male rats were induced high-fat diet (HFD) for 12 weeks. After four weeks, the rats were randomly divided into three groups while simultaneously continuing the HFD for the remaining eight weeks. Group specificities were HFD-control, HFD-MIT and HFD-HIIT. The rats were sacrificed 48 h after the last training session and the samples were collected. Analysis of variance and Pearson's correlation test were used for the statistical analyses (significance level: p ≤ 0.05). RESULTS The results showed that both HIIT and MIT improved heart ABCA1, ABCG1, ABCG4, ABCG5, ABCG8, LXR-α and PPARγ gene expression as well as plasma Apo A1, LCAT, lipids and lipoproteins (p ≤ 0.05). Moreover, higher cardiac ABCA1, ABCG1, ABCG4, ABCG5, ABCG8 and PPARγ expression and plasma high-density lipoprotein cholesterol (p ≤ 0.05) concentrations were found in the HFD-HIIT group compared with the HFD-MIT group. CONCLUSION HIIT may have more cardioprotective effects than MIT against atherosclerosis, along with saving time, as supported by the changes observed in the main factors involved in the RCT process.
Collapse
Affiliation(s)
| | | | - Parvin Farzanegi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lida Moradi
- Department of Physical Education and Sports Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Assessment of the Main Compounds of the Lipolytic System in Treadmill Running Rats: Different Response Patterns between the Right and Left Ventricle. Int J Mol Sci 2019; 20:ijms20102556. [PMID: 31137663 PMCID: PMC6566686 DOI: 10.3390/ijms20102556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the time and intensity dependent effects of exercise on the heart components of the lipolytic complex. Wistar rats ran on a treadmill with the speed of 18 m/min for 30 min (M30) or 120 min (M120) or with the speed of 28 m/min for 30 min (F30). The mRNA and protein expressions of the compounds adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), G0/G1 switch gene 2 (G0S2), hormone sensitive lipase (HSL) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were examined by real-time PCR and Western blot, respectively. Lipid content of free fatty acids (FFA), diacylglycerols (DG) and triacylglycerols (TG) were estimated by gas liquid chromatography. We observed virtually no changes in the left ventricle lipid contents and only minor fluctuations in its ATGL mRNA levels. This was in contrast with its right counterpart i.e., the content of TG and DG decreased in response to both increased duration and intensity of a run. This occurred in tandem with increased mRNA expression for ATGL, CGI-58 and decreased expression of G0S2. It is concluded that exercise affects behavior of the components of the lipolytic system and the lipid content in the heart ventricles. However, changes observed in the left ventricle did not mirror those in the right one.
Collapse
|
7
|
Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H. Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sci 2019; 224:139-148. [PMID: 30922848 DOI: 10.1016/j.lfs.2019.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS Reverse Cholesterol Transport (RCTr) is the mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. Exercise affects RCTr, by influencing high-density lipoprotein cholesterol (HDL) through remodeling and by promoting hepatobiliary sterol excretion. The objectives of this systematized review of animal studies is to summarize the literature and provide an overview of the effects of chronic exercise (at least two weeks) on apolipoproteins (Apo A-I, Apo-E), Paraoxonase-1 (PON1), ATP-binding cassette transporters (ABCA1, ABCG1, ABCG4, ABCG5, ABCG8), scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr) and cholesterol 7 alpha-hydroxylase (CYP7A1) and Niemann-Pick C1-like 1 (NPC1L1). MATERIALS AND METHODS Three electronic databases (PubMed, Science Direct and Google Scholar) were searched for eligible studies conducted from the earliest available date to August 2018. KEY FINDINGS Most of studies investigate the effects of low to moderate intensity aerobic training on RCTr elements. The majority were on exercised rats undertaking moderate intensity aerobic training. SIGNIFICANCE This review highlights that moderate intensity and longer-term training has a greater effect on RCTr elements than low intensity training. There a few studies examining high intensity training which warrants further investigation.
Collapse
Affiliation(s)
| | - David Robert Broom
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
| | - Abbass Ghanbari-Niaki
- Exercise Biochemistry Division, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Rahmati-Ahmadabad S, Shirvani H, Ghanbari-Niaki A, Rostamkhani F. The effects of high-intensity interval training on reverse cholesterol transport elements: A way of cardiovascular protection against atherosclerosis. Life Sci 2018; 209:377-382. [PMID: 30125578 DOI: 10.1016/j.lfs.2018.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
AIMS Reverse cholesterol transport (RCT) is a process that prevents atherosclerosis. Studies showed that exercise training for strengthening cardiac muscle, increasing heart lipid metabolism and its potency against risk factors could protect cardiovascular health. Thus, the present study aims to investigate the effects of high intensity interval training (HIIT) on RCT and its related elements in plasma and tissues (liver and intestine) of rats. MATERIALS AND METHODS Twenty adult male Wistar rats were randomly divided into control (n = 10) and trained (n = 10) groups. The trained group undertook HIIT (90%-95% of VO2max, five days/week, for 10 weeks) on a treadmill. The rats were killed five days after the last training session to minimize the effects of the last training session. KEY FINDINGS A higher and significant ABCA1 mRNA was observed in the liver and intestine of trained rats. However, ABCG1 and LXR expressions only increased in the liver following the HIIT. These changes in the expression of the trained rats were accompanied by higher changes in plasma LCAT and HDL levels. SIGNIFICANCE The responses of ABCA1, as a key player in plasma HDL biogenesis, are similar in liver and intestine tissues after the HIIT program. However, different responses of ABCG1 and LXR in the liver and intestine tissues of the trained rats confirm the main role of the liver than the intestine in HDL biogenes. Therefore, HIIT modality result in cardiovascular protection by increasing the expression of genes involved in RCT and biogenesis of HDL.
Collapse
Affiliation(s)
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbass Ghanbari-Niaki
- Exercise Biochemistry Division, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Fatemeh Rostamkhani
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, Gonçalves DC. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front Physiol 2018; 9:526. [PMID: 29867567 PMCID: PMC5962737 DOI: 10.3389/fphys.2018.00526] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c) is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed), Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016.
Collapse
Affiliation(s)
- Leandro R Marques
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Erico C Caperuto
- Human Movement Laboratory, Universidade São Judas Tadeu, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Daniela C Gonçalves
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
10
|
Taghipoor Asramy A, Ghanbari-Niaki A, Hakemi S, Naghizadeh Qomi M, Moghanny Bashi MM. Effect of 12 Weeks of Intense Endurance Training and Bee Pollen Consumption on ABCA1 Gene Expression in Small Intestine, Liver and Gastrocnemius Muscle of Male Rats. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Askari A, Rashid Lamir A, Bijeh N, Momeni Moghadam M. Effect of 8-Week Aquatic Training and Resistance Training on Plasma NT-4 Levels and NT-4 Expression in Peripheral Blood Mononuclear Cells in Women with Multiple Sclerosis. MEDICAL LABORATORY JOURNAL 2017. [DOI: 10.29252/mlj.11.6.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
12
|
Musman J, Pons S, Barau C, Caccia C, Leoni V, Berdeaux A, Ghaleh B, Morin D. Regular treadmill exercise inhibits mitochondrial accumulation of cholesterol and oxysterols during myocardial ischemia-reperfusion in wild-type and ob/ob mice. Free Radic Biol Med 2016; 101:317-324. [PMID: 27989751 DOI: 10.1016/j.freeradbiomed.2016.10.496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria play a central role in the irreversible damages induced to the heart by a prolonged period of ischemia followed by reperfusion. We previously demonstrated that (1) myocardial ischemia-reperfusion induces mitochondrial accumulation of cholesterol and oxysterols that are deleterious for the organelle; (2) inhibition of cholesterol and oxysterol accumulation prevents mitochondrial injury at reperfusion; (3) exercise is cardioprotective and remains efficient in the presence of co-morbidities such as obesity. The aim of this study was to investigate whether regular exercise limits mitochondrial cholesterol and oxysterol accumulation in wild-type and obese mice. Wild-type C57BL/6J and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise and submitted to 30min of coronary artery occlusion followed by 15min of reperfusion. Regular exercise improved oxidative phosphorylation, restored the antioxidant capacity of the heart by increasing the expression of SOD1 and catalase and reduced the mitochondrial generation of oxysterols in wild-type as well as in ob/ob mice. In wild-type animals, exercise limited the production of oxysterols. In ob/ob mice, despite hypercholesterolemia, chronic exercise abolished the mitochondrial accumulation of cholesterol and concomitantly reduced the generation of 7α-hydroxycholesterol, 7-ketocholesterol and cholesterol-5α,6α-epoxide. In conclusion, regular exercise prevents the mitochondrial accumulation of cholesterol and oxysterols which occurs during early reperfusion of an ischemic myocardium in mice. This effect is observed in normo and hypercholesterolemic animals. It may be partly responsible for the antioxidant properties of regular exercise and contribute to its cardioprotective effect in obese conditions.
Collapse
Affiliation(s)
- Julien Musman
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
| | - Sandrine Pons
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
| | - Caroline Barau
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
| | - Claudio Caccia
- Laboratory of Clinical Pathology and Medical Genetics, Institute Carlo Besta, Milano, Italy
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Institute Carlo Besta, Milano, Italy; Laboratory of Clinical Chemistry, Hospital of Varese, ASST 7 Laghi, Varese, Italy
| | - Alain Berdeaux
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
| | - Bijan Ghaleh
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France
| | - Didier Morin
- INSERM U955, Equipe 03, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| |
Collapse
|
13
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
14
|
Dietary Njavara rice bran oil reduces experimentally induced hypercholesterolaemia by regulating genes involved in lipid metabolism. Br J Nutr 2015; 113:1207-19. [DOI: 10.1017/s0007114515000513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was carried out to evaluate the anti-atherogenic effect of Njavara rice bran oil (NjRBO) on atherosclerosis by modulating enzymes and genes involved in lipid metabolism in rats fed a high-cholesterol diet (HCD). Adult male rats (Sprague–Dawley strain, weighing 100–120 g) were divided into three groups of nine animals each. Group I served as the control, group II were fed a HCD and group III were fed a HCD and NjRBO (100 mg/kg body weight). The study duration was 60 d. Serum and tissue lipid profile, atherogenic index, enzymes of lipid metabolism, plasma C-reactive protein levels, serum paraoxonase and arylesterase activities, thiobarbituric acid-reactive substances, gene and protein expression of paraoxonase 1 (PON1), PPARα, ATP-binding cassette transporter A1 (ABCA1), apoB and apoA1 in the liver were quantified. Total cholesterol, TAG, phospholipid, NEFA, LDL-cholesterol concentrations in the serum and liver, lipogenic enzyme activities, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and atherogenic index were significantly increased in HCD-fed rats, but they decreased after treatment with NjRBO. HDL-cholesterol level and lecithin cholesterol acyl transferase activity were increased in the NjRBO-treated group, but decreased in the HCD-fed group. The expression levels of ABCA1, apoA1, PON1 and PPARα were found to be significantly increased in NjRBO-treated group compared with the HCD-fed group; however, the expression level of apoB was found to be higher in HCD-fed group and lower in the NjRBO-treated group. These data suggest that NjRBO possesses an anti-atherogenic property by modulating lipid metabolism and up-regulating genes involved in reverse cholesterol transport and antioxidative defence mechanism through the induction of the gene expressionPON1.
Collapse
|