1
|
Shiri A, Sarvari J, Firoozi Ghahestani S, Gholijani N, Tamaddon AM, Rastegari M, Moattari A, Hosseini SY. The Inflammatory and Fibrotic Patterns of Hepatic Stellate Cells Following Coagulation Factors (VII or X)-Shielded Adenovirus Infection. Curr Microbiol 2021; 78:718-726. [PMID: 33410956 DOI: 10.1007/s00284-020-02297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
The role of coagulation factors on the inflammatory effect of adenovirus (Ad) is an unresolved question that was considered herein. Adenovirus-36(Ad36) and adenovector-5-GFP(Ad5-GFP) were prepared; then, they were loaded with VII or FX factors. The size/charge parameters and transduction efficiency were evaluated using fluorescent microscopy and Zetasizer, respectively. The Ad36-coagulation factor complexes were added on the stellate cells, LX-2. Thereafter, the expression levels of inflammatory and fibrotic genes including PKR, IL-1β, TNF-α, TIMP-1, collagen, and TGF-β were measured by qPCR and ELISA assays. The loading of FVII or FX factors not only increased the size/charge of Ad5-GFP but also enhanced the transduction rate up to 60% and 75%, respectively, compared to the controls (45%). The PKR expression analysis showed an upregulation following treatment with all Ad36 forms (P = 0.0152). The IL-1β and TNF-α cytokines analyses demonstrated that the Ad36-FVII complex elicited the highest inflammatory response (P = 0.05). Similarly, the fibrosis-related expression analysis revealed a more inductive role of FVII when loaded on Ad36, compared to the FX factor. The findings suggested that adenovirus elicited the innate inflammatory and activation state in the hepatic stellate cell. In addition, adenovirus shielded by FVII exhibited more innate inflammation as well as activation of the stellate cells than the FX-loaded virus.
Collapse
Affiliation(s)
- Alireza Shiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,GastroenteroHepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Firoozi Ghahestani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmunity Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahroo Rastegari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
The superior role of coagulation factor FX over FVII in adenoviral-mediated innate immune induction of the hepatocyte: an in vitro experiment. Clin Exp Hepatol 2020; 6:199-206. [PMID: 33145426 PMCID: PMC7592097 DOI: 10.5114/ceh.2020.99512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/23/2020] [Indexed: 01/07/2023] Open
Abstract
Aim of the study To better understanding the contribution of coagulation factors to the extent of adenovirus-mediated innate toxicity on the hepatocyte. Material and methods Adenovirus-36 (AD) and adenovector type 5-GFP (Ad5-GFP) were propagated and titered; then, they were loaded with coagulation factors VII or X. The complex of adenovirus with coagulation factor VII and X were for size and charge parameters. After adding AD-VII and AD-X complexes, the expression levels of innate inflammatory genes including protein kinase R (PKR), interleukin (IL)-1β, IL-8 and IL-18 were measured by Real-time PCR on a hepatocellular carcinoma cell line, HepG2. Results The loading of coagulation factors VII and X on Ad5-GFP enhanced the transduction rate up to 50% and 60% (p < 0.05), respectively, compared to the adenovector alone (30%) (p < 0.05). The formation of the coagulation factor-virus complex leads to multimodal size distribution with an increase in average hydrodynamic size and absolute zeta potential. The qPCR results showed that PKR expression increased significantly after treatment with all adenoviruses. These findings also showed that AD had a significant (p = 0.0152) inflammatory impact on Hep-G2. However, AD which was loaded with FX (AD-X) exhibited the most inflammatory effect (p = 0.0164). Significantly, the expression of IL-1β (p = 0.0041), IL-8 (p = 0.0107) and IL-18 (p = 0.0193) were also enhanced following FX loading. On the other hand, the AD-VII complex showed the least effect of innate immune induction when compared to the negative control (p < 0.05). Conclusions The loading of coagulation factors, particularly FX, could enhance the transduction efficiency of Ad5-GFP. Furthermore, adenovirus loaded with FX exhibited more innate toxicity on the hepatocytes, while it was not the case for FVII.
Collapse
|
3
|
Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, Hosseini SY, Yaghoubi R, Gholami S, Dehyadegari MA, Merat S. Antibody Development to HCV Alternate Reading Frame Protein in Liver Transplant Candidate and its Computational Analysis. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164617666190822103329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background::
HCV Alternate Reading Frame Protein (ARFP) is a frameshift product of
HCV-core encoding. Here, we characterized specific anti-ARFP antibodies in Liver Transplant Candidate
(LTC) and chronic HCV-infected patients.
Methods::
The ARFP gene was cloned and the recombinant protein was purified using Nickel chromatography
and confirmed by western blotting. ELISA was developed using recombinant core-1a, core-
1b, ARFP-1a protein, and 99-residue synthetic ARFP 1b peptide. By several Bioinformatics tools,
general properties, immunogenic epitopes, and structures of these proteins were obtained.
Results::
The seroprevalence of anti-core and anti-ARFP antibodies was 100% in LTC patients, but only
75.2% and 94.3% of chronic patients had evidence of anti-ARFP and anti-core antibodies, respectively.
In-silico results demonstrated physicochemical features, antigen properties and potential interactors
that could describe progression toward advanced liver disease.
Conclusion::
As the first report, the prevalence of anti-ARFP antibodies in LTC patients is of the order
of 100% and titer of anti-ARFP antibody was significantly higher in LTC patients compared to chronic
individuals, suggesting the possible role of ARFP in the progression toward advanced liver disease. In
addition, docking analysis determined several interactor proteins such as prefoldin 2, cathepsin B, vitronectin,
and angiotensinogen that have an important role in progression to chronic infection and liver
disease development.
Collapse
Affiliation(s)
- Zahra Musavi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ghassabi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hallaji
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghoubi
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Gholami
- Shiraz Organ Transplant Unit, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Dehyadegari
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shahin K, Hosseini SY, Jamali H, Karimi MH, Azarpira N, Zeraatian M. The enhancing impact of amino termini of hepatitis C virus core protein on activation of hepatic stellate cells. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:57-63. [PMID: 32190226 PMCID: PMC7069533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To investigate the potential effects of carboxyl and amino termini of HCV core protein on the HSCs activation. BACKGROUND The core protein is recognized as the most important fibrosis inducer of Hepatitis C virus (HCV). While the exogenous fibrotic effect of HCV core protein has been reported earlier, the endogenous effect and the role of two termini must still be investigated. METHODS Plasmids expressing full length, carboxyl-truncated (T1), or amino-truncated (T3) versions of the core were transfected into LX 2 cells. MTT assay was performed to evaluate the cytotoxicity of the endogenous expression of different regions of core protein on these cells. Afterwards, the total RNA was reversely transcribed and introduced into quantitative polymerase chain reaction (qPCR) to measure the expression level of collagen type I (COL1A1), α-smooth muscle actin (-SMA), tissue metalloproteinase inhibitor 1 (TIMP-1), and transforming growth factor-β1 (TGF-β1). In addition, TGF-β1 as a fibrotic factor, was also assessed in the supernatant of LX-2 cells using ELISA method. RESULTS The full and T1 versions of the core exhibited a measurable proliferative effect on LX 2 cells (P<0.05). Analysis of the gene expression was also showed that, in spite of amino-truncated version, these constructs represented a significant activation impact compared to the empty plasmid. Moreover, the result of TGF β assay was in agreement with the results of mRNA expression analysis. CONCLUSION The endogenous expression of the full and carboxyl-truncated versions of the core exhibited a significant activator effect on HSCs. Therefore, it can be concluded that, amino domain of HCV core protein performs a stellate cell activation role.
Collapse
Affiliation(s)
- Khashayar Shahin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hoshang Jamali
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mastaneh Zeraatian
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Hekmat S, Sadat SM, Aslani MM, Mahdavi M, Bolhassani A, Halvaee FA, Ghahari SMM, Aghasadeghi MR, Siadat SD. Truncated Core/NS3 Fusion Protein of HCV Adjuvanted with Outer Membrane Vesicles of Neisseria meningitidis Serogroup B: Potent Inducer of the Murine Immune System. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30278608 PMCID: PMC6462289 DOI: 10.29252/.23.4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants. The present study evaluated the immunogenicity of rC/N as a bipartite antigen accompanied by Neisseria meningitidis serogroup B outer membrane vesicles (NMB OMVs) in BALB/c mice. Methods The NMB OMVs were produced and evaluated accurately. The administrations were as follows: rC/N-OMV, rC/N-Freund’s complete/incomplete adjuvant (CIA), rC/N-MF59, rC/N, OMV, MF59, and PBS. The production of Th1 (IFN-γ, IL-2)/Th2 (IL-4)/Th17 (IL-17) cytokines and granzyme B (cytotoxic indicator) by splenic mononuclear cells and the humoral concentration of total IgG/IgG1 (Th2)/IgG2a (Th1) in sera of mice were measured using mouse ELISA kits. Results Concentrations of Th1/Th2/Th17 cytokines, granzyme B, and immunoglobulins in the spleens and sera of immunized mice, which had received antigen plus each adjuvant (rC/N-OMV, rC/N-Freund’s CIA, and rC/N-MF59), significantly raised compared to the controls (rC/N, OMV, MF59, and PBS). Th1-type responses were dominant over Th2-type responses in vaccinated mice with rC/N-OMV, and Th2 type responses increased dominantly in vaccinated mice with rC/N-MF59 (p < 0.05). Discssion NMB OMVs were able to increase Th1 immune responses dramatically more than MF59 and Freund’s CIA. The formulation of rC/N with NMB OMVs showed its ability to induce Th1, Th2, and Th17 immune responses. rC/N-NMB OMVs is a promising approach for the development of an HCV therapeutic vaccine.
Collapse
Affiliation(s)
- Soheila Hekmat
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Mohammad Reza Aghasadeghi
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran,Corresponding Authors: Mohammad Reza Aghasadeghi Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Tel.: (+98-21) 66969291; Fax: (+98-21) 66969291; E-mail:
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran,
Seyed Davar Siadat Department of Mycobacteriology and Pulmonary Research, Pasteur Institue of Iran, Tehran, Iran; Tel.: (+98-21) 66953311; Fax: (+98-21) 66953311; E-mail:
| |
Collapse
|
6
|
Jamhiri I, Shahin K, Khodabandeh Z, Kalantar K, Sarvari J, Atapour A, Mina F, Ahmadnejad A, Hosseini SY. Recombinant NS3 Protein Induced Expression of Immune Modulatory Elements in Hepatic Stellate Cells During Its Fibrotic Activity. Viral Immunol 2018; 31:575-582. [PMID: 30281404 DOI: 10.1089/vim.2018.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of studies that show the important role of NS3 protein from hepatitis C virus in fibrosis. However, mechanisms of the effects of this protein on immune modulation of stellate cells remain to be investigated. Herein, the effect of NS3 protein on the expression level of suppressor of cytokine signaling (SOCS)1/3 and interleukin-24 (IL-24)-related genes was investigated in hepatic stellate cell (HSC), LX-2. Recombinant NS3 protein was added to LX-2 HSC culture. Leptin and standard medium treatments were also included in experiments as positive and negative controls, respectively. Total RNA was extracted from each well at 6, 12, and 24 h after NS3 addition. The expression levels of the fibrotic (transforming growth factor beta 1 [TGF-β], alpha-smooth muscle actin [α-SMA], and COL1A1), inflammatory (IL-6 and IL-24), IL-20R, IL-22R, and immunosuppressive genes (SOCS1 and SOCS3) were evaluated by real-time polymerase chain reaction (PCR). Recombinant NS3 protein induced activated phenotypes of LX-2 with a significant increase in the expression level of α-SMA COL1A1 (p < 0.0001) and TGF-β. Moreover, this exposure led to a meaningful elevation in the expression of IL-6. Furthermore, compared with leptin (control), after the stellate cell treatment with NS3, SOCS1 and SOCS3 gene expression induced at a comparable level. Compared with the control sample, the NS3 protein significantly increased the expression level of IL-24 and its related receptors, IL-20R and IL-22R. This study not only confirmed the previously proved inflammatory and fibrotic effect of this protein but also indicated that high expression levels of SOCS1, SOCS3, and IL-24 have a significant effect on HSC activation. Therefore, these two molecules can be used as a potential therapeutic target candidate.
Collapse
Affiliation(s)
- Iman Jamhiri
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Khashayar Shahin
- 2 Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan, Iran
| | - Zahra Khodabandeh
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Kurosh Kalantar
- 3 Department of Immunology, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Jamal Sarvari
- 4 Gastroenterohepatology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Amir Atapour
- 6 Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Fatemeh Mina
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Asma Ahmadnejad
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Seyed Younes Hosseini
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
7
|
Behzadi MA, Alborzi A, Pouladfar G, Dianatpour M, Ziyaeyan M. Expression of NS3/NS4A Proteins of Hepatitis C Virus in Huh7 Cells Following Engineering Its Eukaryotic Expression Vector. Jundishapur J Microbiol 2016; 8:e27355. [PMID: 26862385 PMCID: PMC4741058 DOI: 10.5812/jjm.27355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although the development of novel therapeutic regimens to combat hepatitis C virus (HCV) infection have been speeded up with successful results, no efficient vaccines exist yet. OBJECTIVES This study aimed to construct a eukaryotic expression vector encoding nonstructural proteins, NS3/NS4A, of HCV genotype 3a, and evaluate its expression on Huh7 cell surface. MATERIALS AND METHODS The NS3/NS4A sequence was isolated from a patient with HCV-3a chronic infection, cloned into intermediate vector pTZ57R/T, and then used for engineering a mammalian expression vector, pDisplay, to direct the respective protein to the secretory pathway and anchor it to the plasma membrane. The expression of the protein in Huh7 cell, which was transiently transfected with the vector using Lipofectamine, was determined by immunocytochemical staining assay with fluorescein isothiocyanate (FITC)-conjugated antibodies to the HA/myc tags located besides the fusion fragment. RESULTS The results showed that the fragment was successfully amplified and cloned into a eukaryotic expression vector. Sequencing and enzyme digestion analysis confirmed the cloned gene completion and its correct position in the pDisply-NS3/NS4A plasmid. Immunocytochemical staining revealed that the target protein was expressed as a membrane-anchored protein in the Huh7 cells. CONCLUSIONS This study can serve as a fundamental experiment for the construction of a NS3/NS4A eukaryotic expression vector and its expression in mammalian cells. Further research is underway to evaluate the fragment immunogenicity in lab animal models.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Abdolvahab Alborzi
- Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mehdi Dianatpour
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mazyar Ziyaeyan
- Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Mazyar Ziyaeyan, Professor Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, P. O. Box: 7193711351, Shiraz, IR Iran. Tel: +98-7136474304, Fax: +98-7136474303, E-mail:
| |
Collapse
|
8
|
Li Z, Chen R, Zhao J, Qi Z, Ji L, Zhen Y, Liu B. LSM14A inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication by activating IFN-β signaling pathway in Marc-145. Mol Cell Biochem 2014; 399:247-56. [DOI: 10.1007/s11010-014-2251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022]
|
9
|
Abstract
UNLABELLED Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
Collapse
|
10
|
Khanlari Z, Sabahi F, Hosseini SY, Ghaderi M. HCV NS3 Blocking Effect on IFN Induced ISGs Like Viperin and IL28 With and Without NS4A. HEPATITIS MONTHLY 2014; 14:e17822. [PMID: 24976840 PMCID: PMC4071354 DOI: 10.5812/hepatmon.17822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/09/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is able to down-regulate innate immune response. It is important to know the immune pathways that this virus interacts with. HCV non-structural protein 3 (NS3) plays an important role in this viral feature. HCV NS3 protein could affect the expression of antiviral protein such as viperin, and interleukin 28whichare important proteins in antiviral response. OBJECTIVES HCV has developed different mechanisms to maintain a persistent infection, especially by disrupting type I interferon response and subsequent suppression of expression of Interferon stimulatory genes (ISGs). Viperin, a member of ISGs, is considered as a host antiviral protein, which interferes with viral replication. Since it is a good target for some viruses to evade host responses, it is interesting to study if HCV has evolved a mechanism to interfere with this member of ISGs. MATERIALS AND METHODS We evaluated the impact of NS3, NS3/4A and a mutated nonfunctional NS3 on ISGs expression such as viperin and IL-28 after the induction of IFN signaling Jak-STAT pathway using IFN-. RESULTS NS3 protein disrupted the expressions of viperin gene and IL-28, an inducer for the expression of ISGs and viperin itself. By comparing the roles of NS3 and NS3/4A protease activities in suppressing the innate immune responses, we also showed that NS3 (without NS4A) has the ability to down-regulate ISGs expression, similar to that of NS3/4A. CONCLUSIONS ISGs expression is impeded by NS3 protease activity and its interaction with Jak-STAT pathway proteins. In addition, the NS3/4A substrates spectrum seems to be similar to those of NS3.
Collapse
Affiliation(s)
- Zahra Khanlari
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding Author: Farzaneh Sabahi, Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-2182883880, Fax: +98-2182884555, E-mail:
| | - Seyed Younes Hosseini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mostafa Ghaderi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
11
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arash Memarnejadian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| |
Collapse
|