1
|
Taghizadeh-Hesary F, Ghadyani M, Kashanchi F, Behnam B. Exploring TSGA10 Function: A Crosstalk or Controlling Mechanism in the Signaling Pathway of Carcinogenesis? Cancers (Basel) 2024; 16:3044. [PMID: 39272902 PMCID: PMC11393850 DOI: 10.3390/cancers16173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-specific antigens have been a significant area of focus in cancer treatment since their discovery in the mid-twentieth century. Cancer germline antigens are a class of antigens specifically overexpressed in germline tissues and cancer cells. Among these, TSGA10 (testis-specific gene antigen 10) is of great interest because of its crucial impact on cancer progression. Early studies explored TSGA10 expression in a variety of cancer types. More recent studies revealed that TSGA10 can suppress tumor progression by blocking cancer cell metabolism, angiogenesis, and metastasis. An open question regarding the TSGA10 is why cancer cells must express a protein that prevents their progression. To answer this question, we conducted a comprehensive review to engage the TSGA10 in the context of the current understanding of "malignant transformation". This review demonstrated that TSGA10 expression level in cancer cells depends on the cancer stage across malignant transformation. In addition, we evaluated how TSGA10 expression can prevent the "cancer hallmarks". Given this information, TSGA10 can be of great interest in developing effective targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Mobina Ghadyani
- Chester Medical School, University of Chester, Chester CH2 1BR, UK
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Babak Behnam
- Avicenna Biotech Research, Germantown, MD 20871, USA
| |
Collapse
|
2
|
Almutairi MH, Alrubie TM, Alshareeda AT, Albarakati N, Almotiri A, Alamri AM, Almutairi BO, Alanazi M. Differential expression and regulation of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 gene profiles in colon cancer tissues and their in vitro response to epigenetic drugs. PLoS One 2024; 19:e0307724. [PMID: 39208330 PMCID: PMC11361649 DOI: 10.1371/journal.pone.0307724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Colon cancer (CC) is a significant cause of death worldwide, particularly in Saudi Arabia. To increase the accuracy of diagnosis and treatment, it is important to discover new specific biomarkers for CC. The main objectives of this research are to identify potential specific biomarkers for the early diagnosis of CC by analyzing the expressions of eight cancer testis (CT) genes, as well as to analyze how epigenetic mechanisms control the expression of these genes in CC cell lines. Tissue samples were collected from 15 male patients with CC tissues and matched NC tissues for gene expression analysis. The expression levels of specific CT genes, including ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12, were assessed using quantitative techniques. To validate the gene expression patterns, we used publicly available CC statistics. To investigate the effect of inhibition of DNA methylation and histone deacetylation on CT gene expression, in vitro experiments were performed using HCT116 and Caco-2 cell lines. There was no detected expression of the genes neither in the patient samples nor in NC tissues, except for TEX48, which exhibited upregulation in CC samples compared to NC tissues in online datasets. Notably, CT genes showed expression in testis samples. In vitro, experiments demonstrated significant enhancement in mRNA expression levels of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 following treatment with 5-aza-2'-deoxycytidine and trichostatin A in HCT116 and Caco-2 cell lines. Epigenetic treatments modify the expression of CT genes, indicating that these genes can potentially be used as biomarkers for CC. The importance of conducting further research to understand and target epigenetic mechanisms to improve CC treatment cannot be overemphasized.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M. Alrubie
- Laboratories Directorate, General Directorate of Animal Health, Ministry Deputyship for Agriculture, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Alaa T. Alshareeda
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi, Saudi Arabia
| | - Abdullah M. Alamri
- Department of Biochemistry, Genome Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Genome Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Khodayari S, Khodayari H, Saeedi E, Mahmoodzadeh H, Sadrkhah A, Nayernia K. Single-Cell Transcriptomics for Unlocking Personalized Cancer Immunotherapy: Toward Targeting the Origin of Tumor Development Immunogenicity. Cancers (Basel) 2023; 15:3615. [PMID: 37509276 PMCID: PMC10377122 DOI: 10.3390/cancers15143615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is a promising approach for treating malignancies through the activation of anti-tumor immunity. However, the effectiveness and safety of immunotherapy can be limited by tumor complexity and heterogeneity, caused by the diverse molecular and cellular features of tumors and their microenvironments. Undifferentiated tumor cell niches, which we refer to as the "Origin of Tumor Development" (OTD) cellular population, are believed to be the source of these variations and cellular heterogeneity. From our perspective, the existence of distinct features within the OTD is expected to play a significant role in shaping the unique tumor characteristics observed in each patient. Single-cell transcriptomics is a high-resolution and high-throughput technique that provides insights into the genetic signatures of individual tumor cells, revealing mechanisms of tumor development, progression, and immune evasion. In this review, we explain how single-cell transcriptomics can be used to develop personalized cancer immunotherapy by identifying potential biomarkers and targets specific to each patient, such as immune checkpoint and tumor-infiltrating lymphocyte function, for targeting the OTD. Furthermore, in addition to offering a possible workflow, we discuss the future directions of, and perspectives on, single-cell transcriptomics, such as the development of powerful analytical tools and databases, that will aid in unlocking personalized cancer immunotherapy through the targeting of the patient's cellular OTD.
Collapse
Affiliation(s)
- Saeed Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Hamid Khodayari
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| | - Elnaz Saeedi
- Oxford Clinical Trials Research Unit, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Habibollah Mahmoodzadeh
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1819613844, Iran
| | | | - Karim Nayernia
- International Center for Personalized Medicine (P7MEDICINE), Luise-Rainer-Str. 6-12, 40235 Düsseldorf, Germany
| |
Collapse
|
4
|
Zhang Z, Chen W, Luo C, Zhang W. Exploring a four-gene risk model based on doxorubicin resistance-associated lncRNAs in hepatocellular carcinoma. Front Pharmacol 2022; 13:1015842. [PMID: 36457707 PMCID: PMC9708384 DOI: 10.3389/fphar.2022.1015842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2024] Open
Abstract
Background: Liver cancer is a lethal cancer type among which hepatocellular carcinoma (HCC) is the most common manifestation globally. Drug resistance is a central problem impeding the efficiency of HCC treatment. Long non-coding RNAs reportedly result in drug resistance. This study aimed to identify key lncRNAs associated with doxorubicin resistance and HCC prognosis. Materials and Methods: HCC samples with gene expression profiles and clinical data were accessed from public databases. We applied differential analysis to identify key lncRNAs that differed between HCC and normal samples and between drug-fast and control samples. We also used univariate Cox regression analysis to screen lncRNAs or genes associated with HCC prognosis. The least absolute shrinkage and selection operator (LASSO) was used to identify the key prognostic genes. Finally, we used receiver operating characteristic analysis to validate the effectiveness of the risk model. Results: The results of this study revealed RNF157-AS1 as a key lncRNA associated with both doxorubicin resistance and HCC prognosis. Metabolic pathways such as fatty acid metabolism and oxidative phosphorylation were enriched in RNF157-AS1-related genes. LASSO identified four protein-coding genes-CENPP, TSGA10, MRPL53, and BFSP1-to construct a risk model. The four-gene risk model effectively classified HCC samples into two risk groups with different overall survival. Finally, we established a nomogram, which showed superior performance in predicting the long-term prognosis of HCC. Conclusion: RNF157-AS1 may be involved in doxorubicin resistance and may serve as a potential therapeutic target. The four-gene risk model showed potential for the prediction of HCC prognosis.
Collapse
Affiliation(s)
| | | | | | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Burton J, Wojewodzic MW, Rounge TB, Haugen TB. A Role of the TEX101 Interactome in the Common Aetiology Behind Male Subfertility and Testicular Germ Cell Tumor. Front Oncol 2022; 12:892043. [PMID: 35774118 PMCID: PMC9237224 DOI: 10.3389/fonc.2022.892043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Patients who develop testicular germ cell tumours (TGCT) are at higher risk to be subfertile than the general population. The conditions are believed to originate during foetal life, however, the mechanisms behind a common aetiology of TGCT and male subfertility remains unknown. Testis-expressed 101 (TEX101) is a glycoprotein that is related to male fertility, and downregulation of the TEX101 gene was shown in pre-diagnostic TGCT patients. In this review, we summarize the current knowledge of TEX101 and its interactome related to fertility and TGCT development. We searched literature and compilation of data from curated databases. There are studies from both human and animals showing that disruption of TEX101 result in abnormal semen parameters and sperm function. Members of the TEX101 interactome, like SPATA19, Ly6k, PICK1, and ODF genes are important for normal sperm function. We found only two studies of TEX101 related to TGCT, however, several genes in its interactome may be associated with TGCT development, such as PLAUR, PRSS21, CD109, and ALP1. Some of the interactome members are related to both fertility and cancer. Of special interest is the presence of the glycosylphosphatidylinositol anchored proteins TEX101 and PRSS21 in basophils that may be coupled to the immune response preventing further development of TGCT precursor cells. The findings of this review indicate that members of the TEX101 interactome could be a part of the link between TGCT and male subfertility.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
| | - Marcin W. Wojewodzic
- Department of Environmental and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| | - Trine B. Haugen
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| |
Collapse
|
6
|
Valipour E, Nooshabadi VT, Mahdipour S, Shabani S, Farhady-Tooli L, Majidian S, Noroozi Z, Mansouri K, Motevaseli E, Modarressi MH. Anti-angiogenic effects of testis-specific gene antigen 10 on primary endothelial cells. Gene 2020; 754:144856. [PMID: 32512160 DOI: 10.1016/j.gene.2020.144856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Growing evidence indicates the antitumor and antiangiogenesis activities of testis-specific gene antigen 10 (TSGA10). However, the underlying mechanisms and precise role of TSGA10 in angiogenesis are still elusive. In this study, we isolated human umbilical cord vein endothelial cells (HUVECs) and stably transfected with pcDNA3.1 carrying TSGA10 coding sequence. We demonstrated that TSGA10 over-expression significantly decreases HUVEC tubulogenesis and interconnected capillary network formation. HUVECs over-expressing TSGA10 exhibited a significant decrease in migration and proliferation rates. TSGA10 over-expression markedly decreased expression of angiogenesis-related genes, including VEGF-A, VEGFR-2, Ang-1, Ang-2, and Tie-2. Our ELISA results showed the decrease in VEGF-A mRNA expression level is associated with a significant decrease in its protein secretion. Additionally, over-expressing TSGA10 decreased expression levels of marker genes of cell migration (MMP-2, MMP-9, and SDF-1a) and proliferation (PCNA and Ki-67. Furthermore, ERK-1 and AKT phosphorylation significantly reduced in HUVECs over-expressing TSGA10. Our findings suggest a potent anti-angiogenesis activity of TSGA10 in HUVECs through down-regulation of ERK and AKT signalling pathways, and may provide therapeutic benefits for the management of different pathological angiogenesis.
Collapse
Affiliation(s)
- Elahe Valipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shadi Mahdipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Shabani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Farhady-Tooli
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | - Sina Majidian
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Motevaseli
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, Qiao D, Zhou W, Wu R, Liu Q, Li Y. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genomic Med 2020; 8:e1284. [PMID: 32410354 PMCID: PMC7336754 DOI: 10.1002/mgg3.1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Acephalic spermatozoa is an extremely rare type of teratozoospermia that is associated with male infertility. Several genes have been reported to be relevant to acephalic spermatozoa. Thus, more genetic pathogenesis needs to be explored. Methods Whole‐exome sequencing was performed in a patient with acephalic spermatozoa. Then Sanger sequencing was used for validation in the patient and his family. The patient's spermatozoa sample was observed by papanicolaou staining and transmission electron microscopy. Western blot and immunofluorescence were performed to detect the level and localization of related proteins. Results A novel homozygous frameshift insertion mutation c.545dupT;p.Ala183Serfs*10 in exon 8 of TSGA10 (NM_001349012.1) was identified. Our results showed misarranged mitochondrial sheath and abnormal flagellum in the patient's spermatozoa. TSGA10 failed to be detected in the patient's spermatozoa. However, the expression of SUN5 and PMFBP1 remained unaffected. Conclusion These results suggest that the novel homozygous frameshift insertion mutation of TSGA10 is a cause of acephalic spermatozoa.
Collapse
Affiliation(s)
- Yuanyuan Ye
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoli Wei
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yanwei Sha
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Na Li
- Intensive Care Unit, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Xiaohong Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ling Cheng
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Duanrui Qiao
- Department of Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Weidong Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rongfeng Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qiaobin Liu
- Center for Reproductive Medicine, the 174th Hospital of People's Liberation Army, Xiamen, China
| | - Youzhu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Taherian-Esfahani Z, Dashti S. Cancer-testis antigens: An update on their roles in cancer immunotherapy. Hum Antibodies 2020; 27:171-183. [PMID: 30909205 DOI: 10.3233/hab-190366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recent studies have assessed suitability of tumor antigens for immunotherapy. Based on the restricted expression pattern in somatic tissues, cancer-testis antigens (CTAs) are possible candidates for cancer immunotherapy. These antigens are expressed in various tumors including gastrointestinal, breast, skin and hematologic malignancies. OBJECTIVES To find clinical trials utilizing CTAs in cancer patients. METHODS We searched PubMed, google scholar and specific websites that registers clinical trials. RESULTS A number of clinical trials have been designed to evaluate safety and efficacy of CTA-based treatments. The results of some of them have been promising. In the current literature search, we summarized the clinical trials of CTA-based therapies in cancer patients. CONCLUSIONS Based on the availability of different formulations of CTA-based vaccines, future researches should compare efficiency of these modalities.
Collapse
|
9
|
Expression analysis of miR-100 and selected genes from mTOR pathway in breast cancer patients. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Dashti S, Taherian-Esfahani Z. Cellular immune responses against cancer-germline genes in cancers. Hum Antibodies 2019; 28:57-64. [PMID: 31356200 DOI: 10.3233/hab-190392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cancer-germline genes are a class of genes that are normally expressed in testis, trophoblast and few somatic tissues but abnormally expressed in tumor tissues. Their expression signature indicates that they can induce cellular immune responses, thus being applied as targets in cancer immunotherapy. OBJECTIVES To obtain the data of cellular immune responses against cancer-germline genes in cancer. METHODS We searched PubMed/Medline with the key words cancer-germline antigen, cancer-testis antigen, CD4+ T cell, CD8+ T cell and cancer. RESULTS About 40 cancer-germline genes have been shown to induce T cell specific responses in cancer patients. Melanoma, lung and breast cancer are among the mostly assessed cancer types. Several epitopes have been identified which can be used in immunotherapy of cancer. CONCLUSION Cellular immune responses against cancer-germline genes are indicative of appropriateness of these genes as therapeutic targets.
Collapse
|
11
|
Wu D, Lin J, Zhu Y, Zhang H, Zhong Y. Expression of Testis-Specific Gene Antigen 10 (TSGA10) is Associated with Apoptosis and Cell Migration in Bladder Cancer Cells and Tumor Stage and Overall Survival in Patients with Bladder Cancer. Med Sci Monit 2019; 25:5289-5298. [PMID: 31310599 PMCID: PMC6652375 DOI: 10.12659/msm.915682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Testis-specific gene antigen 10 (TSGA10) is a tumor suppressor in several types of human malignancy. However, there have been few studies that have investigated the role of TSGA10 in bladder cancer. This study aimed to investigate the expression of TSGA10 in human bladder cancer cell lines and bladder cancer tissues and its effects on patient prognosis. MATERIAL AND METHODS The expression of TSGA10 in 40 tissue samples of bladder cancer and matched normal adjacent bladder tissue, and five human bladder cancer cell lines was assessed by immunohistochemistry, Western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and flow cytometry. The correlation between the expression level of TSGA10 and the clinicopathological features of patients with bladder cancer was analyzed and overall survival (OS) in patients with bladder cancer was determined by Kaplan-Meier curves. RESULTS Upregulation of TSGA10 expression in tissues from patients with bladder cancer was compared with normal adjacent bladder tissue and was significantly correlated with gender, metastasis, lymphovascular invasion, and tumor stage in bladder cancer. In bladder cancer cell lines, down-regulation of TSGA10 reduced cell apoptosis and increased cell migration, and resulted in the formation of an epithelial-mesenchymal transition (EMT) phenotype. Overexpression of TSGA10 resulted in an increased apoptosis rate of tumor cells, reduced cell migration, and contributed to the reversal of the EMT phenotype. CONCLUSIONS These findings support that TSGA10 deserves further study as a potential novel prognostic biomarker in bladder cancer.
Collapse
Affiliation(s)
- Dashan Wu
- Department of Urological Surgery, Qinghai University Affiliated Hospital, Xining, Qinghai, China (mainland)
| | - Jiawei Lin
- Department of Urological Surgery, Qinghai University Affiliated Hospital, Xining, Qinghai, China (mainland)
| | - Yingbin Zhu
- Department of Urological Surgery, Qinghai University Affiliated Hospital, Xining, Qinghai, China (mainland)
| | - Haotian Zhang
- Department of Urological Surgery, Henan Province People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Yuanfu Zhong
- Department of Urological Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
12
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Seifi-Alan M, Shamsi R, Ghafouri-Fard S. Application of cancer-testis antigens in immunotherapy of hepatocellular carcinoma. Immunotherapy 2019; 10:411-421. [PMID: 29473472 DOI: 10.2217/imt-2017-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide common malignancy with poor prognosis. Several studies have aimed at identification of appropriate biomarkers for early detection of this cancer. Cancer-testis antigens (CTAs) as a novel group of tumor-associated antigens have been demonstrated to be expressed in HCC samples as well as peripheral blood samples from these patients but not in the corresponding adjacent noncancerous samples. Such pattern of expression has provided them an opportunity to be used as immunotherapeutic targets. The detection of spontaneous immune responses against CTAs in HCC patients has prompted design of CTA-based immunotherapeutic protocols in these patients. The results of some clinical trials have been promising in a subset of patients.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Seifi-Alan M, Dianatpour A, Geranpayeh L, Mirfakhraie R, Omrani MD, Ghafouri-Fard S. Expression analysis of selected miR-206 targets from the transforming growth factor-β signaling pathway in breast cancer. J Cell Biochem 2019; 120:13545-13553. [PMID: 30920079 DOI: 10.1002/jcb.28629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 11/11/2022]
Abstract
Breast cancer as a molecularly heterogeneous malignancy is associated with dysregulation of several signaling pathways, including transforming growth factor-β (TGF-β) signaling. On the other hand, several recent studies have demonstrated the role of microRNAs (miRNAs) in breast cancer pathogenesis. In the current study, we performed a computerized search to find miR-206 target genes that are functionally linked to the TGF-β signaling pathway. We selected LEF1, Smad2, and Snail2 genes to assess their expression in 65 breast cancer samples and their adjacent noncancerous tissues (ANCTs) in correlation with expression levels of miR-206 as well as clinicopathological characteristics of patients. miR-206 was significantly downregulated in (Estrogen receptor) ER-positive breast cancer samples compared with their corresponding ANCTs. Association analysis between expression levels of genes and demographic features of patients showed significant association between expressions of SMAD2 and LEF1 genes and body mass index ( P values of 0.03 and 0.02, respectively). miR-206 low-expression levels were associated with TNM stage, mitotic rate, and lymph node involvement ( P values of 0.02, 0.01, and 0.01 respectively). In addition, SMAD2 high-expression levels were associated with HER2 status ( P = 0.02). Consequently, our data highlight the role of TGF-β signaling dysregulation in the pathogenesis of breast cancer and warrant further evaluation of miRNAs and messenger RNA coding genes in this pathway to facilitate detection of cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mahnaz Seifi-Alan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Ali Dianatpour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Mir D Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| |
Collapse
|
15
|
Shams R, Geranpayeh L, Omrani MD, Ghafouri-Fard S. Expression analysis of Inhibitor Of DNA Binding 1 (ID-1) gene in breast cancer. Hum Antibodies 2019; 27:129-134. [PMID: 30856107 DOI: 10.3233/hab-180358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND ID-1 gene codes for a helix-loop-helix (HLH) protein that inhibits the DNA binding and transcriptional activation function of these proteins. METHODS We analyzed ID-1 expression in microarray and RNA Sequencing databases as well as 61 breast cancer tissues compared with adjacent non-cancerous tissues (ANCTs). RESULTS Expression analysis of ID-1 gene in two microarray datasets and RNA sequencing data showed down-regulation of ID-1 in tumoral tissues compared with normal tissues. However, ID-1 expression analysis in tumoral tissues and ANCTs obtained from 61 patients revealed its over-expression in tumoral tissues. A negative association was detected between ID-1 expression levels and ER status. CONCLUSION ID-1 expression may be implicated in the pathogenesis of breast cancer especially in patient with ER negative status.
Collapse
Affiliation(s)
- Roshanak Shams
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Asgharzadeh MR, Pourseif MM, Barar J, Eskandani M, Jafari Niya M, Mashayekhi MR, Omidi Y. Functional expression and impact of testis-specific gene antigen 10 in breast cancer: a combined in vitro and in silico analysis. ACTA ACUST UNITED AC 2019; 9:145-159. [PMID: 31508330 PMCID: PMC6726749 DOI: 10.15171/bi.2019.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Testis-specific gene antigen 10 (TSGA10) is a less-known gene, which is involved in the vague biological paths of different cancers. Here, we investigated the TSGA10 expression using different concentrations of glucose under hypoxia and also its interaction with the hypoxia-inducible factor 1 (HIF-1). Methods: The breast cancer MDA-MB-231 and MCF-7 cells were cultured with different concentrations of glucose (5.5, 11.0 and 25.0 mM) under normoxia/hypoxia for 24, 48, and 72 hours and examined for the HIF-1α expression and cell migration by Western blotting and scratch assays. The qPCR was employed to analyze the expression of TSGA10. Three-dimensional (3D) structure and the energy minimization of the interacting domain of TSGA10 were performed by MODELLER v9.17 and Swiss-PDB viewer v4.1.0/UCSF Chimera v1.11. The UCSF Chimera v1.13.1 and Hex 6.0 were used for the molecular docking simulation. The Cytoscape v3.7.1 and STRING v11.0 were used for protein-protein interaction (PPI) network analysis. The HIF-1a related hypoxia pathways were obtained from BioModels database and reconstructed in CellDesigner v4.4.2. Results: The increased expression of TSGA10 was found to be significantly associated with the reduced metastasis in the MDA-MB-231 cells, while an inverse relationship was seen between the TSGA10 mRNA level and cellular migration but not in the MCF-7 cells. The C-terminal domain of TSGA10 interacted with HIF-1α with high affinity, resulting in PPI network with 10 key nodes (HIF-1α, VEGFA, HSP90AA1, AKT1, ARNT, TP53, TSGA10, VHL, JUN, and EGFR). Conclusions: Collectively, TSGA10 functional expression alters under the hyper-/hypo-glycemia and hypoxia, which indicates its importance as a candidate bio-target for the cancer therapy.
Collapse
Affiliation(s)
- Mohammad Reza Asgharzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Jafari Niya
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract 2019; 215:506-511. [PMID: 30638859 DOI: 10.1016/j.prp.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/15/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Different studies have investigated TSGA10 expression in various cancerous tissues but, so far no study has been conducted on newly diagnosed (ND) AML patients. The association of TSGA10 gene expression with hypoxia inducible factor (HIF) and angiogenic factors has remained to be fully elucidated and is still a controversial issue. The present study was designed to investigate this association in patients newly diagnosed with AML. METHODS We evaluated TSGA10, HIF-1α and VEGF mRNA levels in ND AML patients and healthy subjects using real-time PCR technique. Data were analyzed via comparative Livak method. RESULTS Based on the results of this study, TSGA10 gene expression was decreased in 28 out of 30 (93.3%) samples while VEGF and HIF-1α expression levels were increased in all ND AML patients compared to healthy controls. Diagnostic evaluation was performed by receiver operating characteristic (ROC) curve and area under the curve (AUC) calculation. Respectively, using cut-off relative quantification of 1.604, 0.0329, and 0.0042, the sensitivity values of TSGA10, VEGF, and HIF-1α gene expression were 86.7%, 90%, and 100%. Also, specificity values were 100%, 100% and 100%, respectively. TSGA10 expression was shown to be reduced in ND AML patients compared with healthy subjects and we found a negative correlation between TSGA10 and VEGF expression. CONCLUSIONS Since TSGA10 interacts with HIF-1 and affects its transcriptional activity, in ND AML patients with decreased TSGA10 expression, VEGF expression was high suggesting a TSGA10 mediated regulation of HIF-1 target genes. Altogether, the current study showed that TSGA10 could be considered as a tumor suppressor in AML patients.
Collapse
|
18
|
Astaneh M, Dashti S, Esfahani ZT. Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies 2019; 27:237-240. [PMID: 31006681 DOI: 10.3233/hab-190377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are a class of cancer antigens with extensive expression in human cancers. Many researchers have detected antibody responses against these tumor antigens in serum of cancer patients. OBJECTIVES To evaluate the relevance of humoral immune responses against CTAs in clinical outcome of cancer patientsMETHODS: We searched PubMed/Medline with the key words cancer-testis antigen, antibody, humoral response and cancer. RESULTS Humoral immune responses against CTAs have been detected in several human malignancies including skin, breast, brain and ovarian cancers. Some studies have shown associations between the presence of these responses in patients and patients' survival. CONCLUSION Humoral immune responses against CTAs are putative biomarkers for cancer detection and follow-up.
Collapse
|
19
|
|
20
|
MiR-206 Target Prediction in Breast Cancer Subtypes by Bioinformatics Tools. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.69554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Faramarzi S, Ghafouri-Fard S. Melanoma: a prototype of cancer-testis antigen-expressing malignancies. Immunotherapy 2018; 9:1103-1113. [PMID: 29032737 DOI: 10.2217/imt-2017-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the first malignancy in which expression and immunogenicity of cancer-testis antigens (CTAs) have been documented. Several CTAs have been shown to be expressed in melanoma samples especially those with metastatic potential. Many of them have been shown to exert oncogenic effects through modulation of essential pathways involved in melanoma. The crucial role of CTAs in the pathogenesis of melanoma, the high prevalence of expression of CTA panels in melanoma and the presence of spontaneous as well as inducible immune responses against CTAs in melanoma patients potentiate CTAs as immunotherapeutic targets. Numerous clinical trials are now ongoing to evaluate CTA-based immunotherapeutic effects in melanoma patient's survival. NY-ESO-1 and MAGE antigens have the most promising results up to now.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Faramarzi S, Ghafouri-Fard S. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy. Immunotherapy 2018; 9:1019-1034. [PMID: 28971747 DOI: 10.2217/imt-2017-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Long non-coding RNA GHET1 Is Possibly Involved in the Pathogenesis of a Fraction of Breast Cancers. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.9920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Dianatpour A, Ghafouri-Fard S. Long Non Coding RNA Expression Intersecting Cancer and Spermatogenesis: A Systematic Review. Asian Pac J Cancer Prev 2017; 18:2601-2610. [PMID: 29072050 PMCID: PMC5747377 DOI: 10.22034/apjcp.2017.18.10.2601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Numerous similarities have been noted between gametogenic and tumorigenic programs in features
such as global hypomethylation, immune evasion, immortalization, meiosis induction, and migration. In addition, aberrant
expression of testis specific genes has been detected in various cancers which has led to categorization of these genes
as “cancer-testis genes”. Most of the examples identified in this category are protein encoding. However, recent studies
have revealed that non-coding RNAs, including long non coding RNAs (lncRNAs), may have essential regulatory
roles in telomere biology, chromatin dynamics, modulation of gene expression and genome structural organization.
All of these functions are implicated in both gametogenic and tumorigenic programs. Methods: In the present study,
we conducted a computerized search of the MEDLINE/PUBMED and Embase databases with the key words lncRNA,
gametogenesis, testis and cancer. Results: We found a number of lncRNAs with essential roles and notable expression
in both gametogenic and cancer tissues. Conclusions: Comparison between cancer tissues and gametogenic tissues
has shown that numerous lncRNAs are expressed in both, playing similar roles in processes modulated by signaling
pathways such as Wnt/β-catenin and PI3K/AKT/mTOR. Evaluation of expression patterns and functions of these
genes should pave the way to discovery of biomarkers for early detection, prognostic assessment and evaluation of
therapeutic responses in cancers.
Collapse
Affiliation(s)
- Ali Dianatpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| | | |
Collapse
|
25
|
Sarrafzadeh S, Geranpayeh L, Ghafouri-Fard S. Expression Analysis of Long Non-Coding PCAT-1in Breast Cancer. Int J Hematol Oncol Stem Cell Res 2017; 11:185-191. [PMID: 28989584 PMCID: PMC5625468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Background: The prostate cancer-associated non-coding RNA transcript 1 (PCAT-1) is a newly identified long non- coding RNA whose participation in tumorigenesis of a variety of cancers has been observed. In the present study, we aimed at analysis of its expression in breast cancer patients. Materials and Methods: The expression of PCAT-1 was assessed using real-time reverse transcription polymerase chain reaction in tumor samples obtained from 47newly diagnosed breast cancer patients as well as their corresponding adjacent non-cancerous tissues (ANCTs). Results: We detected significant over-expression of PCAT-1 in 12/47 (25.5%) of tumoral tissues compared with their corresponding ANCTs. However, no significant association has been found between the levels of PCAT-1 transcripts and patients' clinical data such as tumor size, stage, grade, estrogen and progesterone receptors or Her2/neu status. Conclusion: PCAT-1 is possibly involved in the pathogenesis of fraction of breast cancers. Future studies are needed to evaluate its precise function in breast cancer.
Collapse
Affiliation(s)
- Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Li Y, Li J, Wang Y, Zhang Y, Chu J, Sun C, Fu Z, Huang Y, Zhang H, Yuan H, Yin Y. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett 2017; 399:64-73. [PMID: 28274891 DOI: 10.1016/j.canlet.2017.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer diagnosed and is the second leading cause of cancer death among women in the US. For breast cancer, early diagnosis and efficient therapy remains a significant clinical challenge. Therefore, it is necessary to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens (CTAs) have emerged as a potential clinical biomarker targeting immunotherapy for various malignancies due to the nature of its characteristics. CTAs are a group of tumor associated antigens (TAAs) that display normal expression in immune-privileged organs, but display aberrant expression in several types of cancers, particularly in advanced cancers. Investigation of CTAs for the clinical management of breast malignancies indicates that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic. Moreover, TAAs could be therapeutic targets for cancer immunotherapy. This review is an attempt to address the promising CTAs in breast cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China; Nanjing Maternity and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hansheng Zhang
- School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China.
| |
Collapse
|
27
|
Nikpayam E, Soudyab M, Tasharrofi B, Sarrafzadeh S, Iranpour M, Geranpayeh L, Mirfakhraie R, Gharesouran J, Ghafouri-Fard S. Expression analysis of long non-coding ATB and its putative target in breast cancer. Breast Dis 2017; 37:11-20. [PMID: 28598827 DOI: 10.3233/bd-160264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND A long noncoding RNA (lncRNA) activated by transforming growth factor (TGF)-β (lncRNA-ATB) has been recently shown to promote the invasion-metastasis cascade in various types of cancers via upregulation of some targets including ZEB1. OBJECTIVES The aim of the present study was to elucidate the expression of lncRNA-ATB and ZEB in breast cancer patients. METHODS The expression of these genes was evaluated by real-time reverse transcription polymerase chain reaction in tumor samples form 50 newly diagnosed breast cancer patients as well as their corresponding adjacent non-cancerous tissues (ANCTs). Patients were divided into subsequent groups according to the median lncRNA-ATB expression. RESULTS LncRNA-ATB has been shown to be downregulated in about two third of tumor samples compared with their ANCTs.A significant association has been found between ZEB1 expression and Ki-67 status. In addition, we demonstrated a correlation between expression of lncRNA-ATB and ZEB1 in tumor samples and not in ANCTs. CONCLUSION Collectively, out data show downregulation of lncRNA-ATB in a significant number of breast tumor tissues compared with ANCTs and imply that lncRNA-ATB might have distinct roles in the pathogenesis of different cancers or even different subtypes of a certain cancer which should be evaluated in future studies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cadherins/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Down-Regulation
- Female
- Gene Expression
- Humans
- Ki-67 Antigen/metabolism
- Middle Aged
- RNA, Long Noncoding/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Young Adult
- Zinc Finger E-box-Binding Homeobox 1/genetics
Collapse
Affiliation(s)
- Elahe Nikpayam
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tasharrofi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Iranpour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Taherian-Esfahani Z, Abedin-Do A, Nikpayam E, Tasharofi B, Ghahghaei Nezamabadi A, Ghafouri-Fard S. Cancer-Testis Antigens: A Novel Group of Tumor Biomarkers in Ovarian Cancers. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
MOBASHERI MB, SHIRKOOHI R, MODARRESSI MH. Synaptonemal Complex Protein 3 Transcript Analysis in Breast Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2016; 45:1618-1624. [PMID: 28053928 PMCID: PMC5207103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Breast cancer is the most frequent cancer in women. Cancer/Testis antigens are immunogenic proteins ectopically expressed in human neoplasms. Synaptonemal complex protein 3 (SYCP3) belongs to cancer/testis genes family involved in meiotic events and spermatogenesis. The aim of this study was to express analysis of SYCP3 in breast cancer and validate it as a breast cancer biomarker. METHODS Expression of SYCP3 transcripts in 47 breast tumors, 6 breast cancer cell lines (MCF7, SKBR3, T47D, BT474, MDA-MB-231 and MDA-MB 468), 5 normal breast and 2 testis tissues was studied by Real Time RT-PCR reaction. The reference genes phosphoglucomutase 1 and hypoxanthine guanine phosphoribosyl transferase were used as reactions normalizers. The software tool REST 2009 was applied for statistical analysis of the data. The research was conducted from Apr 2014 to August 2015 in Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. RESULTS All of the studied breast cancer cell lines showed very high levels of SYCP3 overexpression in comparison to normal breast (P=0.001) and even to normal testis (P=0.001), except for MCF7 cell line. Breast tumors showed moderately increasing in transcript changes in comparison to normal breast. CONCLUSION SYCP3 is a known testis-specific gene, but interestingly five out of six studied breast cancer of cell lines showed higher expression levels of SYCP3 in comparison to normal testis and normal breast tissues. SYCP3 has critical role in cell division with known interaction with the tumor suppressor genes, BRCA1 and BRCA2, which are critical genes in breast cancer.
Collapse
Affiliation(s)
- Maryam Beigom MOBASHERI
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran, Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza SHIRKOOHI
- Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein MODARRESSI
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran, Dept. of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| |
Collapse
|
30
|
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers. Immunol Invest 2016; 45:619-40. [DOI: 10.1080/08820139.2016.1197241] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet 2016; 25:233-244. [DOI: 10.1093/hmg/ddv461] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
32
|
Ghafouri-Fard S, Seifi-Alan M, Shamsi R, Esfandiary A. Immunotherapy in Multiple Myeloma Using Cancer-Testis Antigens. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3755. [PMID: 26634107 PMCID: PMC4667235 DOI: 10.17795/ijcp-3755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/29/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Context: Multiple myeloma (MM) is a B-cell malignancy characterized by monoclonal expansion of abnormal plasma cells in the bone marrow. It accounts for 10% of hematological malignancies. Although patients respond to a wide range of anticancer modalities, relapse occurs in a significant number of the cases. Immunotherapeutic approaches have been evolved to tackle this problem. Cancer-testis antigens CTAs as a group of tumor-associated antigens are appropriate targets for cancer immunotherapy as they have restricted expression pattern in normal tissues except for testis which is an immune-privileged site. Expression of these antigens has been assessed in different malignancies including MM. Evidence Acquisition: We performed a computerized search of the MEDLINE/PubMed databases with key words: multiple myeloma, cancer-testis antigen, and cancer stem cell and immunotherapy. Results: Several CTAs including NY-ESO-1, MAGE and GAGE family have been shown to be expressed in MM patients. Cellular and humoral immune responses against these antigens have been detected in MM patients. Conclusions: The frequent and high expression level of CTAs in MM patients shows that these antigens can be applied as cancer biomarkers as well as targets for immunotherapy in these patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mahnaz Seifi-Alan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
33
|
Kazemi-Oula G, Ghafouri-Fard S, Mobasheri MB, Geranpayeh L, Modarressi MH. Upregulation of RHOXF2 and ODF4 Expression in Breast Cancer Tissues. CELL JOURNAL 2015; 17:471-7. [PMID: 26464818 PMCID: PMC4601867 DOI: 10.22074/cellj.2015.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Objective During the past decade, the importance of biomarker discovery has been highlighted in many aspects of cancer research. Biomarkers may have a role in early detection of cancer, prognosis and survival evaluation as well as drug response. Cancer-testis
antigens (CTAs) have gained attention as cancer biomarkers because of their expression
in a wide variety of tumors and restricted expression in testis. The aim of this study was
to find putative biomarkers for breast cancer.
Materials and Methods In this applied-descriptive study, the expression of 4 CTAs,
namely acrosin binding protein (ACRBP), outer dense fiber 4 (ODF4), Rhox homeobox
family member 2 (RHOXF2) and spermatogenesis associated 19 (SPATA19) were ana-
lyzed at the transcript level in two breast cancer lines (MCF-7 and MDA-MB-231), 40
invasive ductal carcinoma samples and their adjacent normal tissues as well as 10 fibroadenoma samples by means of quantitative real-time reverse transcription polymerase
chain reaction (RT-PCR).
Results All four genes were expressed in both cell lines. Expression of ODF4 and RH-
OXF2 was detected in 62.5% and 60% of breast cancer tissues but in 22.5 and 17.5% of
normal tissues examined respectively. The expression of both RHOXF2 and ODF4 was
upregulated in cancerous tissues compared with their normal adjacent tissues by 3.31
and 2.96-fold respectively. The expression of both genes was correlated with HER2/neu
overexpression. RHOXF2 expression but not ODF4 was correlated with higher stages of
tumors. However, no significant association was seen between expression patterns and
estrogen and progesterone receptors status.
Conclusion ODF4 and RHOXF2 are proposed as putative breast cancer biomarkers
at the transcript level. However, their expression at protein level should be evaluated
in future studies.
Collapse
Affiliation(s)
- Golnesa Kazemi-Oula
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran ; Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
34
|
Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol 2015; 37:2933-40. [PMID: 26409453 DOI: 10.1007/s13277-015-4135-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022] Open
Abstract
Breast cancer is a molecularly heterogeneous disease which necessitates a search for markers to provide a more specific classification of this disorder. Long noncoding RNAs as the important subset of noncoding transcripts have been shown to be involved in tumorigenic processes. So, they may be used as markers for early detection of cancer and evaluation of cancer prognosis. In addition, they can be applied as therapeutic targets. In this study, we analyzed expression of four long noncoding RNAs (lncRNAs) namely SOX2OT, PTPRG-AS1, ANRASSF1, and ANRIL in 38 breast cancer tissues and their adjacent noncancerous tissues (ANCTs). ANRASSF1 expression was not detected in any noncancerous tissue. All lncRNAs showed significant overexpression in tumor tissues compared with ANCTs. No association was found between gene expressions and individual clinical data such as tumor stage, grade, size and hormone receptor status except for ANRASSF1 expression and Her2/neu status. In addition, ANRASSF1 and ANRIL expressions were significantly higher in triple negative samples. This study suggests a putative role for these lncRNAs in breast cancer and implies that they can be used as potential cancer biomarkers.
Collapse
|
35
|
Nourashrafeddin S, Dianatpour M, Aarabi M, Mobasheri MB, Kazemi-Oula G, Modarressi MH. Elevated Expression of the Testis-specific Gene WBP2NL in Breast Cancer. BIOMARKERS IN CANCER 2015; 7:19-24. [PMID: 26157336 PMCID: PMC4489666 DOI: 10.4137/bic.s19079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 01/28/2023]
Abstract
Breast cancer is one of the most common causes of cancer death in women; therefore, the study of molecular aspects of breast cancer for finding new biomarkers is important. Recent studies have shown that WW domain-binding protein 2 (WBP2) is important for the oncogenic property of breast cancer. WWP2 N-terminal-like (WBP2NL) is a testis-specific signaling protein that induces meiotic resumption and oocyte activation events. Our previous study revealed that WBP2NL gene expression is elevated in actively dividing cells and it might be associated with cellular proliferation and tumorigenic process. However, the clinical relevance and importance of WBP2NL gene in cancer has not been understood yet. Therefore, we were interested in analyzing the expression of WBP2NL gene in human breast cancer tissues and breast cancer cell lines, for the first time. We used reverse transcription-polymerase chain reaction (RT-PCR) and semi-nested RT-PCR to evaluate the expression of WBP2NL in malignant breast cancer and adjacent noncancerous tissue (ANCT) samples, as well as MCF-7 and MDA-MB-231 cell lines. The WBP2NL gene was expressed in 45 out of 50 (90%) breast cancer tissues and overexpressed in the MDA-MB-231 cell line. We suggest that WBP2NL may play roles in breast cancer activation maybe through binding to a group I WW domain protein. The elevated expression of WBP2NL gene in breast cancer and MDA-MB-231 cell line leads us to suggest that WBP2NL might be considered as a novel prognostic factor for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Seyedmehdi Nourashrafeddin
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. ; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mehdi Dianatpour
- Department of Medical Genetics, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ; Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Aarabi
- Department of Human Genetics, School of Medicine, McGill University, Montreal, Canada
| | - Maryam Beigom Mobasheri
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. ; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnesa Kazemi-Oula
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
36
|
Mobasheri MB, Shirkoohi R, Zendehdel K, Jahanzad I, Talebi S, Afsharpad M, Modarressi MH. Transcriptome analysis of the cancer/testis genes, DAZ1, AURKC, and TEX101, in breast tumors and six breast cancer cell lines. Tumour Biol 2015; 36:8201-6. [PMID: 25994570 DOI: 10.1007/s13277-015-3546-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most frequent cancer with second mortality rate in women worldwide. Lack of validated biomarkers for early detection of breast cancer to warranty the diagnosis and effective treatments in early stages has directed to the new therapeutic approach. Cancer/testis antigens which have restricted normal expression in testis and aberrant expression in different cancers are promising targets for generating cancer vaccines, monoclonal antibodies, or dendritic cell-based immunotherapy. In this context, we investigated the expression of two known cancer testis genes, Aurora kinase C (AURKC) and testis expressed 101 (TEX101), and one new candidate, deleted in azoospermia 1 (DAZ1), in six breast cancer cell lines including two ductal carcinomas, T47D and BT-474, and four adenocarcinomas, MDA-MB-231, MDA-MB-468, MCF7, and SKBR3 as well as 50 breast cancer tumors in comparison to normal mammary epithelial cells using quantitative real-time reverse transcription PCR (RT-PCR). Results showed significant overexpression (p = 0.000) of all three genes in BT474, DAZ1 in MDA-MB-231, and AURKC and DAZ1 in SKBR3 and significant downregulation (p = 0.000) of AURKC in MCF7 cell line relative to normal breast epithelial cells. Breast tumors showed significant overexpression of AURKC in comparison to normal breast tissues (p = 0.016). The results are noticeable especially in the case of AURKC; however, there is a little knowledge about the nature, causes, consequences, and effects of cancer/testis antigens activation in different cancers. It is suggested that AURKC has effects on cell division via its serin/threonin kinases activity and organizing microtubules in relation to centrosome/spindle function during mitosis.
Collapse
Affiliation(s)
- Maryam Beigom Mobasheri
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Issa Jahanzad
- Department of Pathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Talebi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Afsharpad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Ghafouri-Fard S, Shamsi R, Seifi-Alan M, Javaheri M, Tabarestani S. Cancer-testis genes as candidates for immunotherapy in breast cancer. Immunotherapy 2014; 6:165-79. [PMID: 24491090 DOI: 10.2217/imt.13.165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer-testis (CT) antigens are tumor-associated antigens attracting immunologists for their possible application in the immunotherapy of cancer. Several clinical trials have assessed their therapeutic potentials in cancer patients. Breast cancers, especially triple-negative cancers are among those with significant expression of CT genes. Identification of CT genes with high expression in cancer patients is the prerequisite for any immunotherapeutic approach. CT genes have gained attention not only for immunotherapy of cancer patients, but also for immunoprevention in high-risk individuals. Many CT genes have proved to be immunogenic in breast cancer patients suggesting the basis for the development of polyvalent vaccines.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | | | | | | |
Collapse
|
38
|
Yuan X, He J, Sun F, Gu J. Effects and interactions of MiR-577 and TSGA10 in regulating esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2651-2667. [PMID: 24294352 PMCID: PMC3843246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
Testis specific 10 (TSGA10) was originally identified as a testis-specific protein and tumor-associated antigen in a number of cancer types. In this study, we found that down-regulation of TSGA10 was associated with increased malignancy and clinical features of esophageal squamous cell carcinomas (ESCCs). Moreover, increased expression of TSGA10 inhibited, while its knockdown promoted, tumor formation in vivo in nude mice. At the 3'UTR of the TSGA10 gene we identified two binding sites for microRNA-577 (miR-577). Further investigation demonstrated that expression levels of miR-577 and TSGA10 were negatively correlated to each other in ESCC cell lines and tumor samples. Moreover, manipulation of miR-577 and TSGA10 expression confirmed that miR-577 can regulate TSGA10 and in turn affect cell proliferation in vitro. Additionally, with flow cytometry and manipulation of the mir-577/TSGA10 axis, it was found that mir-577/TSGA10 axis influenced the growth of ESCC through regulating the G1-S phase transition. We also obtained evidence to establish that mir-577/TSGA10 axis activation was always accompanied by inactivation of the p53 pathway or the Rb pathway or both, thus, the latter two pathways are obligatory for progression of ESCCs with mir-577/TSGA10 axis activation. In addition, we found that such an interactive pathway in regulating cancer cell proliferation was restricted to a few cancer types including ESCC, but not uniformly applicable to other cancer types. This newly discovered regulatory mechanism provides a new dimension for ESCC diagnosis and therapy.
Collapse
Affiliation(s)
- Xiang Yuan
- Department of Pathology, School of Basic Medical Science, Peking UniversityBeijing 100083, China
| | - Jiangtu He
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Jiang Gu
- Department of Pathology, School of Basic Medical Science, Peking UniversityBeijing 100083, China
- Molecular Pathology Laboratory and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical CollegeShantou 515041, China
| |
Collapse
|