1
|
Geniş B, Öztürk H, Özden Tuncer B, Tuncer Y. Safety assessment of enterocin-producing Enterococcus strains isolated from sheep and goat colostrum. BMC Microbiol 2024; 24:391. [PMID: 39375633 PMCID: PMC11457484 DOI: 10.1186/s12866-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.
Collapse
Affiliation(s)
- Burak Geniş
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, Antalya, 07600, Türkiye
| | - Banu Özden Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Yasin Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye.
| |
Collapse
|
2
|
Đorđević J, Ledina T, Golob M, Mohar Lorbeg P, Čanžek Majhenič A, Bogovič Matijašić B, Bulajić S. Safety evaluation of enterococci isolated from raw milk and artisanal cheeses made in Slovenia and Serbia. FOOD SCI TECHNOL INT 2023; 29:765-775. [PMID: 35912485 DOI: 10.1177/10820132221117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterococci represent a significant part of the non-starter LAB microbiota of artisanal cheeses produced mainly from raw milk. Common approaches to safety evaluation of enterococci isolates include assessment of antimicrobial resistance and virulence potential. Hence, a collection of 47 (n = 22, Serbia; n = 25, Slovenia) dairy enterococcal isolates, of which E. faecalis (n = 28), E. faecium (n = 11), E. durans (n = 5), E. casseliflavus (n = 2), and E. gallinarum (n = 1), was analyzed. The susceptibility to 12 antimicrobials was tested using a broth microdilution method, and the presence of the selected antimicrobial resistance and virulence genes was investigated using PCR. Isolates were resistant to tetracycline (TET) (25.5%), erythromycin (ERY) (17.0%), gentamycin and chloramphenicol (CHL) (∼6%). No resistance to ampicillin (AMP), ciprofloxacin (CIP), daptomycin (DAP), linezolid (LZD), teicoplanin (TEI), tigecycline (TGC) and vancomycin (VAN) was detected. Among all the resistance determinants analyzed, ermB gene was detected most frequently. All 10 virulence genes analyzed were detected with a distribution of cpd (72.3%), cob and ccf (70.2%), gelE (68.1%), hyl (59.6%), agg (53.2%) and esp (46.8%). The genes encoding cytolysin (cylA, cylM and cylB) were amplified to a lesser extent (21.3%, 21.3% and 12.8%, respectively). However, due to the limited number of enterococci isolates analyzed in the present study, further studies are still required in order to better document the safety status of dairy enterococci.
Collapse
Affiliation(s)
- Jasna Đorđević
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Tijana Ledina
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Majda Golob
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Mohar Lorbeg
- Biotechnical Faculty, Institute of Dairy Science and Probiotics, Ljubljana, Slovenia
| | | | | | - Snežana Bulajić
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Lu J, Shen T, Zhang Y, Ma X, Xu S, Awad S, Du M, Zhong Z. Safety assessment of Enterococcus lactis based on comparative genomics and phenotypic analysis. Front Microbiol 2023; 14:1196558. [PMID: 37283930 PMCID: PMC10239811 DOI: 10.3389/fmicb.2023.1196558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Enterococcus faecium is sometimes used in food production; however, its acquisition of antibiotic resistance has become an alarming health concern. The E. lactis species is closely related to E. faecium and has good probiotic potential. This study aimed to investigate the antibiotic resistance of E. lactis. We analyzed the antibiotic resistance phenotype and whole-genome sequences of 60 E. lactis isolates (23, 29, and 8 isolates from dairy products, Rice wine Koji, and human feces, respectively). These isolates showed varying degree of resistance to 13 antibiotics, and were sensitive to ampicillin and linezolid. The E. lactis genomes carried only a subset of commonly reported antibiotic resistance genes (ARGs) in E. faecium. Five ARGs were detected across the investigated E. lactis, including two universally present genes (msrC and AAC(6')-Ii) and three rarely detected ARGs (tet(L), tetM, and efmA). To identify other undescribed antibiotic resistance-encoding genes, a genome-wide association study was performed, returning 160 potential resistance genes that were associated with six antibiotics, namely chloramphenicol, vancomycin, clindamycin, erythromycin, quinupristin-dalfopristin, and rifampicin. Only around one-third of these genes encode known biological functions, including cellular metabolism, membrane transport, and DNA synthesis. This work identified interesting targets for future study of antibiotic resistance in E. lactis. The fact that the lower number of ARGs present in E. lactis supports that it may be an alternative to E. faecalis for use in the food industry. Data generated in this work is of interest to the dairy industry.
Collapse
Affiliation(s)
- Jingda Lu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Tingting Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Yixin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Xinwei Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Sheng Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Sameh Awad
- Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University, Chongqing, China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| |
Collapse
|
4
|
Zaidi SEZ, Zaheer R, Barbieri R, Cook SR, Hannon SJ, Booker CW, Church D, Van Domselaar G, Zovoilis A, McAllister TA. Genomic Characterization of Enterococcus hirae From Beef Cattle Feedlots and Associated Environmental Continuum. Front Microbiol 2022; 13:859990. [PMID: 35832805 PMCID: PMC9271880 DOI: 10.3389/fmicb.2022.859990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococci are commensal bacteria of the gastrointestinal tract of humans, animals, and insects. They are also found in soil, water, and plant ecosystems. The presence of enterococci in human, animal, and environmental settings makes these bacteria ideal candidates to study antimicrobial resistance in the One-Health continuum. This study focused on Enterococcus hirae isolates (n = 4,601) predominantly isolated from beef production systems including bovine feces (n = 4,117, 89.5%), catch-basin water (n = 306, 66.5%), stockpiled bovine manure (n = 24, 0.5%), and natural water sources near feedlots (n = 145, 32%), and a few isolates from urban wastewater (n = 9, 0.2%) denoted as human-associated environmental samples. Antimicrobial susceptibility profiling of a subset (n = 1,319) of E. hirae isolates originating from beef production systems (n = 1,308) showed high resistance to tetracycline (65%) and erythromycin (57%) with 50.4% isolates harboring multi-drug resistance, whereas urban wastewater isolates (n = 9) were resistant to nitrofurantoin (44.5%) and tigecycline (44.5%) followed by linezolid (33.3%). Genes for tetracycline (tetL, M, S/M, and O/32/O) and macrolide resistance erm(B) were frequently found in beef production isolates. Antimicrobial resistance profiles of E. hirae isolates recovered from different environmental settings appeared to reflect the kind of antimicrobial usage in beef and human sectors. Comparative genomic analysis of E. hirae isolates showed an open pan-genome that consisted of 1,427 core genes, 358 soft core genes, 1701 shell genes, and 7,969 cloud genes. Across species comparative genomic analysis conducted on E. hirae, Enterococcus faecalis and Enterococcus faecium genomes revealed that E. hirae had unique genes associated with vitamin production, cellulose, and pectin degradation, traits which may support its adaptation to the bovine digestive tract. E. faecium and E. faecalis more frequently harbored virulence genes associated with biofilm formation, iron transport, and cell adhesion, suggesting niche specificity within these species.
Collapse
Affiliation(s)
- Sani-e-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- University of Lethbridge, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Ruth Barbieri
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shaun R. Cook
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | | | - Deirdre Church
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Laboratory Services, Calgary, AB, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- *Correspondence: Tim A. McAllister,
| |
Collapse
|
5
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
6
|
Akpınar Kankaya D, Tuncer Y. Antibiotic resistance in vancomycin‐resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
- Department of Food Technology Gelendost Vocational School Isparta Uygulamalı Bilimler University Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
7
|
Assessment of safety aspect and probiotic potential of autochthonous Enterococcus faecium strains isolated from spontaneous fermented sausage. Biotechnol Lett 2020; 42:1513-1525. [PMID: 32222865 DOI: 10.1007/s10529-020-02874-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The objectives of this research project were isolation, identification, and evaluation of the safety aspect and probiotics properties of 21 Enterococcus faecium strains isolated from sausages originated from southeastern Serbia. RESULTS Analyzed E. faecium isolates showed tolerance to simulated gastrointestinal conditions. All the examined isolates grew well on media with 0.1% and 0.2% of phenol. None of the tested isolates were histamine-producers, while the synthesis of tyramine was observed for E. faecium sk8-1 and sk8-17. Full resistance to antibiotics was not observed for any examined isolate of E. faecium (penicillin, amoxicillin, and ofloxacin showed the effect on all tested isolates). An inhibition zone against examined pathogens was exhibited by all strains, with the largest inhibition zone against Pseudomonas spp., Proteus spp. and E. coli (12-30 mm/MIC values ranged from 0.5 to 12 mg mL-1). CONCLUSION The results indicated that E. faecium isolates from spontaneously fermented sausage showed a potential for further investigation and possible application as probiotics.
Collapse
|
8
|
Özdemir R, Tuncer Y. Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey. Mol Biol Rep 2020; 47:1703-1712. [PMID: 31989429 DOI: 10.1007/s11033-020-05262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/04/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was isolation and identification of the high-level aminoglycoside-resistant (HLAR) enterococci in raw milk and dairy products and to analyze their antibiotic resistance and the presence of aminoglycoside-modifying enzyme (AME) genes. A total of 59 HLAR enterococci were isolated from raw milk and traditional cheese samples. Thirty-nine of the 59 HLAR enterococci were isolated on streptomycin-containing agar medium, while the other 20 HLAR strains were isolated on gentamicin containing agar medium. The 59 HLAR enterococci were identified as 26 E. faecalis (44.07%), 18 E. faecium (30.51%), 13 E. durans (22.03%), and two E. gallinarum (3.39%) by species-specific PCR. Disk diffusion tests showed that teicoplanin were the most effective antibiotics used in this study, while 89.83% of isolates were found to be resistant to tetracycline. High rates of multiple antibiotic resistance were detected in HLAR isolates. Minimum inhibitory concentration (MIC) values of HLAR enterococci against streptomycin and gentamicin were found in the range of 64 to > 4096 µg/mL. Forty-seven (79.66%) of the 59 HLAR enterococci were found to be both high-level streptomycin-resistant (HLSR) and high-level gentamicin-resistant (HLGR) by MIC tests. However, no correlation was found between the results of the disk diffusion and MIC tests for gentamicin and streptomycin in some HLAR strains. The aph(3')-IIIa (94.92%) was found to be most prevalent AME gene followed by ant(4')-Ia (45.76%), ant(6')-Ia (20.34%) and aph(2'')-Ic (10.17%). None of the isolates contained the aac(6')-Ie-aph(2'')-Ia, aph(2'')-Ib or aph(2'')-Id genes. None of the AME-encoding genes were identified in E. durans RG20.1, E. faecalis RG22.4, or RG26.1. In conclusion, HLAR enterococci strains isolated in this study may act as reservoirs in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Rahime Özdemir
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
9
|
Jahansepas A, Sharifi Y, Aghazadeh M, Ahangarzadeh Rezaee M. Comparative analysis of Enterococcus faecalis and Enterococcus faecium strains isolated from clinical samples and traditional cheese types in the Northwest of Iran: antimicrobial susceptibility and virulence traits. Arch Microbiol 2019; 202:765-772. [PMID: 31822952 DOI: 10.1007/s00203-019-01792-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023]
Abstract
This research was conducted using 50 samples of popular traditional cheeses and 160 enterococcal clinical isolates. Phenotypic and genotypic methods used for identification of enterococci. Then, the incidences of antibacterial resistance and virulence traits were investigated. In total, 165 E. faecalis and 43 E. faecium obtained from traditional cheeses and different clinical isolates were analyzed in the study. Antibiotic susceptibility testing revealed 175(84.1%) isolates with multi-drug resistance (MDR) patterns, which was more common among clinical sources. The predominant virulence profile, including gelE, asa1 and cpd was detected within 47 (22.6%) of the MDR isolates. Our results showed that traditional cheeses and clinical E. faecalis isolates have distinct patterns of virulence traits. The identified enterococci with antibiotic resistance and associated virulence factors, could provide a potential risk to the public health.
Collapse
Affiliation(s)
- Ali Jahansepas
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaeghob Sharifi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Nazlou road, Urmia, West Azarbyjan, Iran.
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Aghazadeh
- Department of Clinical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
10
|
Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from boza, a traditional cereal based fermented beverage. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01213-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|