1
|
Kokila V, Namasivayam SKR, Amutha K, Kumar RR, Bharani RSA, Surya P. Hypocholesterolemic potential of Bacillus amyloliquefaciens KAVK1 modulates lipid accumulation on 3T3-L1 adipose cells and high fat diet-induced obese rat model. World J Microbiol Biotechnol 2024; 40:206. [PMID: 38755297 DOI: 10.1007/s11274-024-04016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- V Kokila
- Department of Plant Biology and Plant Biotechnology, Shree Chandraprabhu Jain College, Chennai, 601 203, India
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - K Amutha
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600 117, India
| | - R Ramesh Kumar
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - R S Arvind Bharani
- Institute of Obstetrics and Gynaecology, Madras Medical College, Egmore, Chennai, Tamil Nadu, 600 008, India
| | - P Surya
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
2
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Yuen Jr JSK, Saad MK, Xiang N, Barrick BM, DiCindio H, Li C, Zhang SW, Rittenberg M, Lew ET, Zhang KL, Leung G, Pietropinto JA, Kaplan DL. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 2023; 12:e82120. [PMID: 37014056 PMCID: PMC10072877 DOI: 10.7554/elife.82120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
We present a method of producing bulk cell-cultured fat tissue for food applications. Mass transport limitations (nutrients, oxygen, waste diffusion) of macroscale 3D tissue culture are circumvented by initially culturing murine or porcine adipocytes in 2D, after which bulk fat tissue is produced by mechanically harvesting and aggregating the lipid-filled adipocytes into 3D constructs using alginate or transglutaminase binders. The 3D fat tissues were visually similar to fat tissue harvested from animals, with matching textures based on uniaxial compression tests. The mechanical properties of cultured fat tissues were based on binder choice and concentration, and changes in the fatty acid compositions of cellular triacylglyceride and phospholipids were observed after lipid supplementation (soybean oil) during in vitro culture. This approach of aggregating individual adipocytes into a bulk 3D tissue provides a scalable and versatile strategy to produce cultured fat tissue for food-related applications, thereby addressing a key obstacle in cultivated meat production.
Collapse
Affiliation(s)
- John Se Kit Yuen Jr
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Ning Xiang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Chunmei Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | | | - Emily T Lew
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Kevin Lin Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Glenn Leung
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
4
|
Khanna S, Bishnoi M, Kondepudi KK, Shukla G. Synbiotic (Lactiplantibacillus pentosus GSSK2 and isomalto-oligosaccharides) supplementation modulates pathophysiology and gut dysbiosis in experimental metabolic syndrome. Sci Rep 2021; 11:21397. [PMID: 34725349 PMCID: PMC8560755 DOI: 10.1038/s41598-021-00601-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic syndrome a lifestyle disease, where diet and gut microbiota play a prodigious role in its initiation and progression. Prophylactic bio-interventions employing probiotics and prebiotics offer an alternate nutritional approach towards attenuating its progression. The present study aimed to evaluate the protective efficacy of a novel synbiotic (Lactiplantibacillus pentosus GSSK2 + isomalto-oligosaccharides) in comparison to orlistat in an experimental model of metabolic syndrome. It was observed that supplementation of synbiotic for 12 weeks to Sprague Dawley rats fed with high fat diet (HFD), ameliorated the morphometric parameters i.e. weight gain, abdominal circumference, Lee's index, BMI and visceral fat deposition along with significantly increased fecal Bacteroidetes to Firmicutes ratio, elevated population of Lactobacillus spp., Akkermansia spp., Faecalibacterium spp., Roseburia spp. and decreased Enterobacteriaceae compared with HFD animals. Additionally, synbiotic administration to HFD animals exhibited improved glucose clearance, lipid biomarkers, alleviated oxidative stress, prevented leaky gut phenotype, reduced serum lipopolysaccharides and modulated the inflammatory, lipid and glucose metabolism genes along with restored histomorphology of adipose tissue, colon and liver compared with HFD animals. Taken together, the study highlights the protective potential of synbiotic in comparison with its individual components in ameliorating HFD-induced metabolic complications.
Collapse
Affiliation(s)
- Sakshi Khanna
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, Park DS, Kim YS. Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6032-6042. [PMID: 34008977 DOI: 10.1021/acs.jafc.1c01440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, β, and δ (C/EBPα, C/EBPβ, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Inseok Kang
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Youri Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Md Ahasun Habib
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Byeong Jo Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| |
Collapse
|
6
|
Effects of Lactobacillus plantarum Q180 on Postprandial Lipid Levels and Intestinal Environment: A Double-Blind, Randomized, Placebo-Controlled, Parallel Trial. Nutrients 2020; 12:nu12010255. [PMID: 31963808 PMCID: PMC7019774 DOI: 10.3390/nu12010255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Probiotics can improve the intestinal environment by enhancing beneficial bacteria to potentially regulate lipid levels; however, the underlying mechanisms remain unclear. The aim of this study was to investigate the effect of Lactobacillus plantarum Q180 (LPQ180) on postprandial lipid metabolism and the intestinal microbiome environment from a clinical perspective. A double-blind, randomized, placebo-controlled study was conducted including 70 participants of both sexes, 20 years of age and older, with healthy blood triacylglyceride (TG) levels below 200 mg/dL. Treatment with LPQ180 for 12 weeks significantly decreased LDL-cholesterol (p = 0.042) and apolipoprotein (Apo)B-100 (p = 0.003) levels, and decreased postprandial maximum concentrations (Cmax) and areas under the curve (AUC) of TG, chylomicron TG, ApoB-48, and ApoB-100. LPQ180 treatment significantly decreased total indole and phenol levels (p = 0.019). In addition, there was a negative correlation between baseline microbiota abundance and lipid marker change, which was negatively correlated with metabolites. This study suggests that LPQ180 might be developed as a functional ingredient to help maintain healthy postprandial lipid levels through modulating gut environment.
Collapse
|
7
|
Huang CH, Ho CY, Chen CT, Hsu HF, Lin YH. Probiotic BSH Activity and Anti-Obesity Potential of Lactobacillus plantarum Strain TCI378 Isolated from Korean Kimchi. Prev Nutr Food Sci 2019; 24:434-441. [PMID: 31915639 PMCID: PMC6941724 DOI: 10.3746/pnf.2019.24.4.434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus (Lab.) is a human probiotic beneficial for the prevention and improvement of disease, yet properties of different Lab. strains are diverse. To obtain a Lab. strain that possesses greater potential against gastrointestinal dysfunction, we isolated Lactobacillus plantarum TCI378 (TCI378) from naturally fermented Korean kimchi. TCI378 has shown potential as probiotic since it can survive at pH 3.0 and in the presence of 0.3% bile acid. The bile salt hydrolase activity of TCI378 was shown by formation of opaque granular white colonies on solid de Man Rogosa Sharpe (MRS) medium supplemented with taurodeoxycholic acid, and its cholesterol-lowering ability in MRS medium supplemented with cholesterol. The metabolites of TCI378 from liquid culture in MRS medium prevented emulsification of bile salts. Moreover, both the metabolites of TCI378 and the dead bacteria reduced oil droplet accumulation in 3T3-L1, as detected by Oil red O staining. The expressions of adipocyte-specific genes perilipin 1 and glucose transporter type 4 were suppressed by the metabolites of TCI378, indicating TCI378 may have anti-obesity effects in adipocytes. These in vitro data show the potential of the prophylactic applications of TCI378 and its metabolites for reducing fat and lowering cholesterol.
Collapse
Affiliation(s)
- Chu-Han Huang
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Cheng-Yu Ho
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Ciao-Ting Chen
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Hsin-Fen Hsu
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| | - Yung-Hsiang Lin
- TCI Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan- Republic of China
| |
Collapse
|