1
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, Lee J, Kim E, Kim J, Cho Y, Park S, Palomera LF, Arumugam TV, Mattson MP, Jo DG. Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Am J Cancer Res 2021; 11:8855-8873. [PMID: 34522215 PMCID: PMC8419044 DOI: 10.7150/thno.59776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
Collapse
|
2
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
4
|
Yu C, Gao J, Zhou Y, Chen X, Xiao R, Zheng J, Liu Y, Zhou H. Deep Phosphoproteomic Measurements Pinpointing Drug Induced Protective Mechanisms in Neuronal Cells. Front Physiol 2016; 7:635. [PMID: 28066266 PMCID: PMC5179568 DOI: 10.3389/fphys.2016.00635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurological disorder that impairs the living quality of old population and even life spans. New compounds have shown potential inneuroprotective effects in AD, such as GFKP-19, a 2-pyrrolidone derivative which has been proved to enhance the memory of dysmnesia mouse. The molecular mechanisms remain to be established for these drug candidates. Large-scale phosphoproteomic approach has been evolved rapidly in the last several years, which holds the potential to provide a useful toolkit to understand cellular signaling underlying drug effects. To establish and test such a method, we accurately analyzed the deep quantitative phosphoproteome of the neuro-2a cells treated with and without GFKP-19 using triple SILAC labeling. A total of 14,761 Class I phosphosites were quantified between controls, damaged, and protected conditions using the high resolution mass spectrometry, with a decent inter-mass spectrometer reproducibility for even subtle regulatory events. Our data suggests that GFKP-19 can reverse Aβ25−35 induced phosphorylation change in neuro-2a cells, and might protect the neuron system in two ways: firstly, it may decrease oxidative damage and inflammation induced by NO via down regulating the phosphorylation of nitric oxide synthase NOS1 at S847; Secondly, it may decrease tau protein phosphorylation through down-regulating the phosphorylation level of MAPK14 at T180. All mass spectrometry data are available via ProteomeXchange with identifier PXD005312.
Collapse
Affiliation(s)
- Chengli Yu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Yanting Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai, China
| | - Xiangling Chen
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Ruoxuan Xiao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai, China
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology in Zurich Zurich, Switzerland
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China; College of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
5
|
Kim I, Lee SH, Jeong J, Park JH, Yoo MA, Kim CM. Functional Profiling of Human MeCP2 by Automated Data Comparison Analysis and Computerized Expression Pathway Modeling. Healthc Inform Res 2016; 22:120-8. [PMID: 27200222 PMCID: PMC4871842 DOI: 10.4258/hir.2016.22.2.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous epigenetic factor that represses gene expression by modifying chromatin. Mutations in the MeCP2 gene cause Rett syndrome, a progressive neurodevelopmental disorder. Recent studies also have shown that MeCP2 plays a role in carcinogenesis. Specifically, functional ablation of MeCP2 suppresses cell growth and leads to the proliferation of cancer cells. However, MeCP2's function in adult tissues remains poorly understood. We utilized a weight matrix-based comparison software to identify transcription factor binding site (TFBS) of MeCP2-regulated genes, which were recognized by cDNA microarray analysis. METHODS MeCP2 expression was silenced using annealed siRNA in HEK293 cells, and then a cDNA microarray analysis was performed. Functional analysis was carried out, and transcriptional levels in target genes regulated by MeCP2 were investigated. TFBS analysis was done within genes selected by the cDNA microarray analysis, using a weight matrix-based program and the TRANSFAC 6.0 database. RESULTS Among the differentially expressed genes with a change in expression greater than two-fold, 189 genes were up-regulated and 91 genes were down-regulated. Genes related to apoptosis and cell proliferation (JUN, FOSL2, CYR61, SKIL, ATF3, BMABI, BMPR2, RERE, and FALZ) were highly up-regulated. Genes with anti-apoptotic and anti-proliferative functions (HNRPA0, HIS1, and FOXC1) were down-regulated. Using TFBS analysis within putative promoters of novel candidate target genes of MeCP2, disease-related transcription factors were identified. CONCLUSIONS The present results provide insights into the new target genes regulated by MeCP2 under epigenetic control. This information will be valuable for further studies aimed at clarifying the pathogenesis of Rett syndrome and neoplastic diseases.
Collapse
Affiliation(s)
- Injoo Kim
- Department of Emergency Medical Technology, Dong-Eui Institute of Technology, Busan, Korea
| | - Shin Hae Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Jinwoo Jeong
- Department of Emergency Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | - Mi Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | - Cheol Min Kim
- Supercomputing Center, Pusan National University, Busan, Korea.; Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea.; Department of Medical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
6
|
Wilkins HM, Carl SM, Greenlief ACS, Festoff BW, Swerdlow RH. Bioenergetic dysfunction and inflammation in Alzheimer's disease: a possible connection. Front Aging Neurosci 2014; 6:311. [PMID: 25426068 PMCID: PMC4226164 DOI: 10.3389/fnagi.2014.00311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022] Open
Abstract
Inflammation is observed in Alzheimer’s disease (AD) subject brains. Inflammation-relevant genes are increasingly implicated in AD genetic studies, and inflammatory cytokines to some extent even function as peripheral biomarkers. What underlies AD inflammation is unclear, but no “foreign” agent has been implicated. This suggests that internally produced damage-associated molecular pattern (DAMPs) molecules may drive inflammation in AD. A more complete characterization and understanding of AD-relevant DAMPs could advance our understanding of AD and suggest novel therapeutic strategies. In this review, we consider the possibility that mitochondria, intracellular organelles that resemble bacteria in many ways, trigger and maintain chronic inflammation in AD subjects. Data supporting the possible nexus between AD-associated bioenergetic dysfunction are discussed.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center , Kansas City, KS , USA ; University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center , Kansas City, KS , USA
| | - Steven M Carl
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center , Kansas City, KS , USA
| | - Alison C S Greenlief
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center , Kansas City, KS , USA
| | - Barry W Festoff
- Department of Neurology, University of Kansas Medical Center , Kansas City, KS , USA ; Department of Pharmacology, University of Kansas Medical Center , Kansas City, KS , USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, KS , USA ; pHLOGISTIX Neurodiagnostics , Lenexa, KS , USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center , Kansas City, KS , USA ; University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center , Kansas City, KS , USA ; Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, KS , USA ; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
7
|
Cherry ABC, Gagne KE, McLoughlin EM, Baccei A, Gorman B, Hartung O, Miller JD, Zhang J, Zon RL, Ince TA, Neufeld EJ, Lerou PH, Fleming MD, Daley GQ, Agarwal S. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells 2014; 31:1287-97. [PMID: 23400930 DOI: 10.1002/stem.1354] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/29/2012] [Indexed: 01/19/2023]
Abstract
In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases.
Collapse
|
8
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
9
|
Su YC, Qi X. Impairment of mitochondrial dynamics: a target for the treatment of neurological disorders? FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has long been appreciated in the pathogenesis of various neurological disorders. However, the molecular basis underlying the decline in mitochondrial function is not fully understood. Mitochondria are highly dynamic organelles that frequently undergo fusion and fission. In healthy cells, the delicate balance between fusion and fission is required for maintaining normal mitochondrial and cellular function. However, under pathological conditions, the balance is disrupted, resulting in excessive mitochondrial fragmentation and mitochondrial dysfunction. The impaired fusion and fission processes can lead to apoptosis, necrosis and autophagic cell death and seem to play causal roles in the progression of acute and chronic neuronal injuries. In this article, important aspects of what is currently known about the molecular machinery regulating mitochondrial fission and fusion in mammalian cells is summarized. Special emphasis will be given to the consequences of disregulated mitochondrial morphology in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Yu-Chin Su
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, E516, Cleveland, OH, 44106-44970, USA
| |
Collapse
|
10
|
Behari M, Shrivastava M. Role of platelets in neurodegenerative diseases: a universal pathophysiology. Int J Neurosci 2013; 123:287-99. [PMID: 23301959 DOI: 10.3109/00207454.2012.751534] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelets play an important role in a variety of disorders, namely, cardiovascular, psychosomatic, psychiatric, thrombosis, HIV/AIDS in addition to various neurodegenerative diseases (NDDs). Recent evidence indicates that platelet react to diverse stressors, thereby offering an interesting vantage point for understanding their potential role in contemporary medical research. This review addresses the possible role of platelets as a systemic probe in various NDDs, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, etc. The current review based on published literature, describes a probable link between platelets and pathophysiology of various NDDs. It also discusses how platelets epitomize ultrastructural, morphological, biochemical and molecular changes, highlighting their emerging role as systemic tools in different NDDs.
Collapse
Affiliation(s)
- Madhuri Behari
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | |
Collapse
|
11
|
Feldhaus P, Fraga DB, Ghedim FV, De Luca RD, Bruna TD, Heluany M, Matos MP, Ferreira GK, Jeremias IC, Heluany C, Streck EL, Zugno AI. Evaluation of respiratory chain activity in lymphocytes of patients with Alzheimer disease. Metab Brain Dis 2011; 26:229-36. [PMID: 21789567 DOI: 10.1007/s11011-011-9253-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/13/2011] [Indexed: 01/02/2023]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease associated with cognitive impairment in multiple domains, such as memory and executive functions. Studies reveal damage in the electron transport chain of patients with AD, suggesting that this mitochondrial dysfunction plays an important role in the pathophysiology of the disease. Blood samples were taken from patients with AD (n = 20) and older subjects without dementia (n = 40) to evaluate the activity of complexes I, II, II-III, and IV of the mitochondrial respiratory chain in isolated lymphocytes. Results from the patient and control groups were compared. The activity of complexes II and IV was increased among patients compared to the control group. No significant difference was observed between controls who were not using psychotropic medication and patients. Our findings point out a mechanism of cellular compensation in which the mitochondrial respiratory chain requires an increase in electron transport to supply the energy needed for cellular functioning. Additional studies are needed to better clarify the mechanisms involved in the mitochondrial dynamics of AD.
Collapse
Affiliation(s)
- Pollyana Feldhaus
- Laboratory of Neurociences and Nacional Institute for Translational Medicine (INCT-TM), Postgraduate Program in Health Sciences, Health Sciences Unit University of Sourthern Santa Catarina, 88806-000, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Swerdlow RH. Role and treatment of mitochondrial DNA-related mitochondrial dysfunction in sporadic neurodegenerative diseases. Curr Pharm Des 2011; 17:3356-73. [PMID: 21902672 PMCID: PMC3351798 DOI: 10.2174/138161211798072535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 12/12/2022]
Abstract
Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, 66160, USA.
| |
Collapse
|
13
|
Unlocking the Door to Neuronal Woes in Alzheimer's Disease: Aβ and Mitochondrial Permeability Transition Pore. Pharmaceuticals (Basel) 2010; 3:1936-1948. [PMID: 27713335 PMCID: PMC4033960 DOI: 10.3390/ph3061936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction occurs early in the progression of Alzheimer’s disease. Amyloid-β peptide has deleterious effects on mitochondrial function and contributes to energy failure, respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species in Alzheimer’s disease. The mechanisms underlying amyloid-β induced mitochondrial stress remain unclear. Emerging evidence indicates that mitochondrial permeability transition pore is important for maintenance of mitochondrial and neuronal function in aging and neurodegenerative disease. Cyclophilin D (Cyp D) plays a central role in opening mitochondrial permeability transition pore, ultimately leading to cell death. Interaction of amyloid-β with cyclophilin D triggers or enhances the formation of mitochondrial permeability transition pores, consequently exacerbating mitochondrial and neuronal dysfunction, as shown by decreased mitochondrial membrane potential, impaired mitochondrial respiration function, and increased oxidative stress and cytochrome c release. Blockade of cyclophilin D by genetic abrogation or pharmacologic inhibition protects mitochondria and neurons from amyloid-β induced toxicity, suggesting that cyclophilin D dependent mitochondrial transition pore is a therapeutic target for Alzheimer’s disease.
Collapse
|
14
|
Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 2010; 42:560-72. [PMID: 20067840 DOI: 10.1016/j.biocel.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/04/2023]
Abstract
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heng Du
- Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Simpkins JW, Yi KD, Yang SH, Dykens JA. Mitochondrial mechanisms of estrogen neuroprotection. Biochim Biophys Acta Gen Subj 2009; 1800:1113-20. [PMID: 19931595 DOI: 10.1016/j.bbagen.2009.11.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 01/11/2023]
Abstract
Mitochondria have become a primary focus in our search not only for the mechanism(s) of neuronal death but also for neuroprotective drugs and therapies that can delay or prevent Alzheimer's disease and other chronic neurodegenerative conditions. This is because mitochrondria play a central role in regulating viability and death of neurons, and mitochondrial dysfunction has been shown to contribute to neuronal death seen in neurodegenerative diseases. In this article, we review the evidence for the role of mitochondria in cell death and neurodegeneration and provide evidence that estrogens have multiple effects on mitochondria that enhance or preserve mitochondrial function during pathologic circumstances such as excitotoxicity, oxidative stress, and others. As such, estrogens and novel non-hormonal analogs have come to figure prominently in our efforts to protect neurons against both acute brain injury and chronic neurodegeneration.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | | | |
Collapse
|
16
|
Wang T, Gu J, Wu PF, Wang F, Xiong Z, Yang YJ, Wu WN, Dong LD, Chen JG. Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-kappaB pathways and inhibition of intracellular ROS/RNS generation. Free Radic Biol Med 2009; 47:229-40. [PMID: 19272442 DOI: 10.1016/j.freeradbiomed.2009.02.027] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/21/2008] [Accepted: 02/11/2009] [Indexed: 12/14/2022]
Abstract
Many natural polyphenolic compounds have been shown to attenuate reactive oxygen/nitrogen species (ROS/RNS) formation and protect against ischemia/reperfusion injury both in vitro and in vivo. 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum, exhibits antioxidative and anti-inflammatory effects. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of TSG on ischemia/reperfusion brain injury and the related mechanisms. We demonstrated that OGD-R-induced neuronal injury, intracellular ROS generation, and mitochondrial membrane potential dissipation were reversed by TSG. The elevation of H2O2-induced [Ca2+]i was also attenuated by TSG. Inhibition of the c-Jun N-terminal kinase (JNK) and Bcl-2 family-related apoptotic signaling pathway was involved in the neuroprotection afforded by TSG. Meanwhile, TSG inhibited iNOS mRNA expression induced by OGD-R, which may be mediated by the activation of SIRT1 and inhibition of NF-kappaB activation. In vivo studies further demonstrated that TSG significantly reduced the brain infarct volume and the number of positive cells by TUNEL staining in the cerebral cortex compared to the MCAO group. Our study indicates that TSG protects against cerebral ischemia/reperfusion injury through multifunctional cytoprotective pathways.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacology, Tongji Medical College, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 2008; 290:51-9. [PMID: 18571833 PMCID: PMC2737506 DOI: 10.1016/j.mce.2008.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and others have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor beta (ERbeta) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERbeta is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERbeta can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
18
|
Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2008; 85:3416-28. [PMID: 17243174 DOI: 10.1002/jnr.21167] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cytoplasmic hybrid (cybrid) technique allows investigators to express selected mitochondrial DNA (mtDNA) sequences against fixed nuclear DNA (nDNA) backgrounds. Cybrids have been used to study the effects of known mtDNA mutations on mitochondrial biochemistry, mtDNA-nDNA inter-species compatibility, and mtDNA integrity in persons without mtDNA mutations defined previously. This review discusses events leading up to creation of the cybrid technique, as well as data obtained via application of the cybrid strategies listed above. Although interpreting cybrid data requires awareness of technique limitations, valuable insights into mtDNA genotype-functional phenotype relationships are suggested.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Simpkins JW, Dykens JA. Mitochondrial mechanisms of estrogen neuroprotection. ACTA ACUST UNITED AC 2007; 57:421-30. [PMID: 17512984 DOI: 10.1016/j.brainresrev.2007.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/20/2007] [Accepted: 04/21/2007] [Indexed: 11/19/2022]
Abstract
Oxidative stress, bioenergetic failure and mitochondrial dysfunction are all implicated in the etiology of neurodegenerative diseases such as Alzheimer's disease (AD). The mitochondrial involvement in neurodegenerative diseases reflects the regulatory role mitochondrial failure plays in both necrotic cell death and apoptosis. The potent feminizing hormone, 17 beta-estradiol (E2), is neuroprotective in a host of cell and animal models of stroke and neurodegenerative diseases. The discovery that 17alpha-estradiol, an isomer of E2, is equally as neuroprotective as E2 yet is >200-fold less active as a hormone, has permitted development of novel, more potent analogs where neuroprotection is independent of hormonal potency. Studies of structure-activity relationships and mitochondrial function have led to a mechanistic model in which these steroidal phenols intercalate into cell membranes where they block lipid peroxidation reactions, and are in turn recycled. Indeed, the parental estrogens and novel analogs stabilize mitochondria under Ca(2+) loading otherwise sufficient to collapse membrane potential. The neuroprotective and mitoprotective potencies for a series of estrogen analogs are significantly correlated, suggesting that these compounds prevent cell death in large measure by maintaining functionally intact mitochondria. This therapeutic strategy is germane not only to sudden mitochondrial failure in acute circumstances, such as during a stroke or myocardial infarction, but also to gradual mitochondrial dysfunction associated with chronic degenerative disorders such as AD.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boul., Fort Worth, TX 76102, USA.
| | | |
Collapse
|
20
|
Stommel EW, van Hoff RM, Graber DJ, Bercury KK, Langford GM, Harris BT. Tumor necrosis factor-alpha induces changes in mitochondrial cellular distribution in motor neurons. Neuroscience 2007; 146:1013-9. [PMID: 17418957 DOI: 10.1016/j.neuroscience.2007.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Motor neuron (MN) mitochondrial abnormalities and elevation in spinal fluid levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). The mechanism of neuron death in ALS remains unclear, along with the contributions of mitochondrial dysfunction and inflammation in the process. Cell cultures enriched for MN derived from embryonic rat spinal cords were established and directly exposed in vitro to recombinant TNF-alpha for varying lengths of time. Although cytokine exposure for up to 4 days failed to induce MN death, mitochondrial changes were observed shortly after initiating treatment. Our results demonstrate that TNF-alpha induced mitochondrial redistribution toward the soma in MN. We postulate that inflammation may precede, and in fact cause, the mitochondrial changes observed in ALS tissue.
Collapse
Affiliation(s)
- E W Stommel
- Department of Medicine, Section of Neurology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, and Department of Biology, Dartmouth College, Hanover 03755, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Zhang X, Wang H, Qi L, Lou Y. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience 2007; 145:911-22. [PMID: 17321691 DOI: 10.1016/j.neuroscience.2006.12.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/13/2006] [Accepted: 12/27/2006] [Indexed: 10/23/2022]
Abstract
Beta-amyloid protein (Abeta) is the hallmark of pathogenic neurotoxins which contribute greatly to Alzheimer's disease (AD)-associated cascade including severe neuronal loss. In present study, icaritin, an active natural ingredient from a Chinese plant, Epimedium sagittatum maxim, was investigated to assess its neuroprotective effect against the toxicity induced with Abeta(25-35) in primary cultured rat cortical neuronal cells as well as the underlying mechanisms. Abeta(25-35) induced neuronal toxicity, characterized by decreased cell viability, lactate dehydrogenase (LDH) release, and neuronal DNA condensation, which is associated with both the loss of membrane potential and the alteration of the expression of Bcl-2 family proteins. The phenotype alternation induced by Abeta(25-35) could be reversed by icaritin. Furthermore, the neuroprotective effects of icaritin mentioned above were estrogen receptor dependent due to the blocking action induced by estrogen receptor antagonist ICI 182,780 and well matched binding affinity with estrogen receptor by a receptor-ligand docking experiment. mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 weakened the protective effects, which implied mitogen-activated protein kinase/extracellular signal-regulated kinase pathway may also be involved in and partly contributed to the neuroprotective effects of icaritin.
Collapse
Affiliation(s)
- Z Wang
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Yu-hang-tang Road 388, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
22
|
Khan SM, Smigrodzki RM, Swerdlow RH. Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 2006; 292:C658-69. [PMID: 16899549 DOI: 10.1152/ajpcell.00224.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past two decades have witnessed an evolving understanding of the mitochondrial genome's (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.
Collapse
Affiliation(s)
- Shaharyar M Khan
- Gencia Corp., 706 B Forrest St., Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
23
|
Montiel R, Lucena MA, Medeiros J, Simões N. The complete mitochondrial genome of the entomopathogenic nematode Steinernema carpocapsae: insights into nematode mitochondrial DNA evolution and phylogeny. J Mol Evol 2006; 62:211-25. [PMID: 16474981 DOI: 10.1007/s00239-005-0072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller's ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above.
Collapse
Affiliation(s)
- Rafael Montiel
- CIRN and Department of Biology, University of the Azores, Ponta Delgada, Açores, 9501-801, Portugal.
| | | | | | | |
Collapse
|
24
|
Binder DR, Dunn WH, Swerdlow RH. Molecular characterization of mtDNA depleted and repleted NT2 cell lines. Mitochondrion 2005; 5:255-65. [PMID: 16050988 DOI: 10.1016/j.mito.2005.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Transmitochondrial cytoplasmic hybrids (cybrids) enable functional assessment of mitochondrial DNA (mtDNA)-encoded proteins. Cybrid production often utilizes cell lines depleted of endogenous mtDNA (rho0 cells), and a number of suitable rho0 cell lines exist for this purpose. We now provide molecular data characterizing an NT2 human teratocarcinoma rho0 cell line, as well as NT2 cybrid derivatives. NT2 rho0 cells contained no detectable mtDNA on a sensitive PCR assay. Eight weeks after exogenous mtDNA transfer cybrids showed no evidence of endogenous mtDNA reversion, and heteroplasmic ratios of a single nucleotide substitution roughly reflected that of the blood samples used to repopulate their mtDNA.
Collapse
Affiliation(s)
- Daniel R Binder
- Department of Neurology, University of Virginia Health System, 1 Hospital Drive, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
25
|
Abstract
Over the past 50 years, reactive oxygen species (ROS) have been investigated as putative mediators of the process of aging. As specific genes and pathways that are involved with ROS homeostasis have been linked to aging in lower organisms, such as Caenorhabditis elegans and Drosophila, the questions of how ROS regulate aging in higher organisms, and whether they do so to the same extent as in lower organisms, have emerged.
Collapse
Affiliation(s)
- Laura L Dugan
- Division of General Medicine and Geriatrics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
26
|
Swerdlow RH, Khan SM. A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease. Med Hypotheses 2005; 63:8-20. [PMID: 15193340 DOI: 10.1016/j.mehy.2003.12.045] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/30/2003] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) includes etiologically heterogeneous disorders characterized by senile or presenile dementia, extracellular amyloid protein aggregations containing an insoluble amyloid precursor protein derivative, and intracytoplasmic tau protein aggregations. Recent studies also show excess neuronal aneuploidy, programmed cell death (PCD), and mitochondrial dysfunction. The leading AD molecular paradigm, the "amyloid cascade hypothesis", is based on studies of rare autosomal dominant variants and does not specify what initiates the common late-onset, sporadic form. We propose for late-onset, sporadic AD a "mitochondrial cascade hypothesis" that comprehensively reconciles seemingly disparate histopathologic and pathophysiologic features. In our model, the inherited, gene-determined make-up of an individual's electron transport chain sets basal rates of reactive oxygen species (ROS) production, which determines the pace at which acquired mitochondrial damage accumulates. Oxidative mitochondrial DNA, RNA, lipid, and protein damage amplifies ROS production and triggers three events: (1) a reset response in which cells respond to elevated ROS by generating the beta-sheet protein, beta amyloid, which further perturbs mitochondrial function, (2) a removal response in which compromised cells are purged via PCD mechanisms, and (3) a replace response in which neuronal progenitors unsuccessfully attempt to re-enter the cell cycle, with resultant aneuploidy, tau phosphorylation, and neurofibrillary tangle formation. In addition to defining a role for aging in AD pathogenesis, the mitochondrial cascade hypothesis also allows and accounts for histopathologic overlap between the sporadic, late-onset and autosomal dominant, early onset forms of the disease.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, McKim Hall, University of Virginia Health System, PO Box 800394, 1 Hospital Drive, Charlottesville, VA, USA.
| | | |
Collapse
|
27
|
Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 2005; 38:2-11. [PMID: 15589366 DOI: 10.1016/j.freeradbiomed.2004.09.030] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/22/2004] [Indexed: 12/31/2022]
Abstract
In addition to powering energy needs of the cell, mitochondria function as pivotal integrators of cell survival/death signals. In recent years, numerous studies indicate that each of the major kinase signaling pathways can be stimulated to target the mitochondrion. These include protein kinase A, protein kinase B/Akt, protein kinase C, extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Although most studies focus on phosphorylation of pro- and antiapoptotic proteins (BAD, Bax, Bcl-2, Bcl-xL), kinase-mediated regulation of complex I activity, anion and cation channels, metabolic enzymes, and Mn-SOD mRNA has also been reported. Recent identification of a number of scaffold proteins (AKAP, PICK, Sab) that bring specific kinases to the cytoplasmic surface of mitochondria further emphasizes the importance of mitochondrial kinase signaling. Immunogold electron microscopy, subcellular fractionation and immunofluorescence studies demonstrate the presence of kinases within subcompartments of the mitochondrion, following diverse stimuli and in neurodegenerative diseases. Given the sensitivity of these signaling pathways to reactive oxygen and nitrogen species, in situ activation of mitochondrial kinases may represent a potent reverse-signaling mechanism for communication of mitochondrial status to the rest of the cell.
Collapse
Affiliation(s)
- Craig Horbinski
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
28
|
Zhao L, Wu TW, Brinton RD. Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 2004; 1010:22-34. [PMID: 15126114 DOI: 10.1016/j.brainres.2004.02.066] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/21/2022]
Abstract
Estrogen receptor (ER) mediated neuroprotection has been demonstrated in both in vitro and in vivo model systems. However, the relative contribution by either ER subtype, ERalpha or ERbeta, to estrogen-induced neuroprotection remains unresolved. To address this question, we investigated the impact of selective ER agonists for either ERalpha, PPT, or ERbeta, DPN, to prevent neurodegeneration in cultured hippocampal neurons exposed to excitotoxic glutamate. Using three indicators of neuronal viability and survival, we demonstrated that both the ERalpha selective agonist PPT and the ERbeta selective agonist DPN protected hippocampal neurons against glutamate-induced cell death in a dose-dependent manner, with the maximal response occurring at 100 pM. Further analyses showed that both PPT and DPN enhanced Bcl-2 expression in hippocampal neurons, with an efficacy comparable to their neuroprotective capacity. Collectively, the present data indicate that activation of either ERalpha or ERbeta can promote neuroprotection in hippocampal neurons, suggesting that both receptor subtypes could be involved in estrogen neuroprotection. As ERbeta is highly expressed in the brain and has little or no expression in the breast or uterus, discovery and design of ERbeta selective molecules could provide a strategy for activating the beneficial effects of estrogen in the brain without activating untoward effects of estrogen in reproductive organs.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | | | | |
Collapse
|
29
|
Waldmeier PC, Tatton WG. Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today 2004; 9:210-8. [PMID: 14980539 DOI: 10.1016/s1359-6446(03)03000-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current treatment options for neurodegenerative diseases are limited and mainly affect only the symptoms of disease. Because of the unknown and probably multiple causes of these diseases, they cannot be readily targeted. However, it has been established that apoptosis contributes to neuronal loss in most neurodegenerative diseases. A possible treatment option is to interrupt the signaling networks that link neuronal damage to apoptotic degradation in neurodegeneration. The viability of this option depends upon the extent to which apoptosis accounts for neuron loss, whether or not interruption of apoptosis signaling results in recovery of neurological function and whether or not there are significant downsides to targeting apoptosis. Several compounds acting at different sites in known apoptotic signaling networks are currently in development and a few are in clinical trial. If an apoptosis-targeted compound succeeds in slowing or halting neurological dysfunction in one or more neurodegenerative diseases, a new era in the treatment of neurodegenerative diseases will begin.
Collapse
Affiliation(s)
- Peter C Waldmeier
- WKL-125.607, Neuroscience Research, Novartis Institutes for Biomedical Research (NIBR), CH-4002 Basel, Switzerland.
| | | |
Collapse
|
30
|
Gu G, Deutch AY, Franklin J, Levy S, Wallace DC, Zhang J. Profiling genes related to mitochondrial function in mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 2003; 308:197-205. [PMID: 12890501 DOI: 10.1016/s0006-291x(03)01233-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since mitochondrial dysfunction plays an important role in the pathogenesis of dopaminergic neurodegeneration in Parkinson's disease, we determined the expression of genes related to mitochondrial function in the substantia nigra of mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a cDNA array. MPTP treatment significantly depleted striatal dopamine, but did not result in apparent neuronal loss in the substantia nigra at 3 and 18 days post-treatment. We also examined changes in genes in the hypothalamus, a region containing dopaminergic neurons that are relatively resistant to MPTP. Finally, we confirmed those genes identified by microarrays as differentially expressed in the substantia nigra but not in the hypothalamus using in situ hybridization. Our results demonstrated that MPTP significantly changed the expressions of six genes in nigral neurons, four of which were related to the mitochondrial electron transport chain: the NADH-ubiquinone oxidoreductase 13 kDa B subunit, the NADH-ubiquinone oxidoreductase MNLL subunit, cytochrome c, and the cytochrome c oxidase Va subunit. Two other differentially expressed genes were the dihydropyridine-sensitive L-type calcium channel alpha-2 subunit precursor and type III alpha-1 procollagen. None of these six genes are encoded by mitochondrial DNA. The potential significance of these gene alterations in the context of Parkinson's disease is discussed.
Collapse
Affiliation(s)
- Guangyu Gu
- Division of Neuropathology, Department of Pathology, University of Washington School of Medicine, Box 359660, Harborview Medical Center, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
This review addresses the mechanisms by which mitochondrial structure and function are regulated, with a focus on vertebrate muscle. We consider the adaptive remodeling that arises during physiological transitions such as differentiation, development, and contractile activity. Parallels are drawn between such phenotypic changes and the pattern of change arising over evolutionary time, as suggested by interspecies comparisons. We address the physiological and evolutionary relationships between ATP production, thermogenesis, and superoxide generation in the context of mitochondrial function. Our discussion of mitochondrial structure focuses on the regulation of membrane composition and maintenance of the three-dimensional reticulum. Current studies of mitochondrial biogenesis strive to integrate muscle functional parameters with signal transduction and molecular genetics, providing insight into the origins of variation arising between physiological states, fiber types, and species.
Collapse
Affiliation(s)
- Christopher D Moyes
- Departments of Biology and Physiology, Queen's University, Kingston, Ontario Canada, K7L 3N6.
| | | |
Collapse
|
32
|
Swerdlow RH, Kish SJ. Mitochondria in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:341-85. [PMID: 12512346 DOI: 10.1016/s0074-7742(02)53013-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|