1
|
Koschel D, Behr J, Berger M, Bonella F, Hamer O, Joest M, Jonigk D, Kreuter M, Leuschner G, Nowak D, Raulf M, Rehbock B, Schreiber J, Sitter H, Theegarten D, Costabel U. [Diagnosis and Treatment of Hypersensitivity Pneumonitis - S2k Guideline of the German Respiratory Society and the German Society for Allergology and Clinical Immunology]. Pneumologie 2024. [PMID: 39227017 DOI: 10.1055/a-2369-8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated interstitial lung disease (ILD) in sensitized individuals caused by a large variety of inhaled antigens. The clinical form of acute HP is often misdiagnosed, while the chronic form, especially the chronic fibrotic HP, is difficult to differentiate from other fibrotic ILDs. The present guideline for the diagnosis and treatment of HP replaces the former German recommendations for the diagnosis of HP from 2007 and is amended explicitly by the issue of the chronic fibrotic form, as well as by treatment recommendations for the first time. The evidence was discussed by a multidisciplinary committee of experts. Then, recommendations were formulated for twelve questions on important issues of diagnosis and treatment strategies. Recently published national and international guidelines for ILDs and HP were considered. Detailed background information on HP is useful for a deeper insight into HP and the handling of the guideline.
Collapse
Affiliation(s)
- Dirk Koschel
- Abteilung Innere Medizin und Pneumologie, Fachkrankenhaus Coswig, Lungenzentrum, Coswig, Deutschland
- Bereich Pneumologie, Medizinische Klinik 1, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Deutschland
- Ostdeutsches Lungenzentrum (ODLZ), Coswig/Dresden, Deutschland
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Melanie Berger
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Köln
- Lehrstuhl für Pneumologie, Universität Witten/Herdecke, Fakultät für Gesundheit, Köln, Deutschland
| | - Francesco Bonella
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| | - Okka Hamer
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Deutschland
- Abteilung für Radiologie, Lungenfachklinik Donaustauf, Donaustauf, Deutschland
| | - Marcus Joest
- Praxis für Pneumologie und Allergologie, Bonn, Deutschland
| | - Danny Jonigk
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
- Institut für Pathologie, RWTH Aachen, Universität Aachen, Aachen, Deutschland
| | - Michael Kreuter
- Lungenzentrum Mainz, Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Marienhaus Klinikum Mainz und Klinik für Pneumologie, ZfT, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Gabriela Leuschner
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München, München, Deutschland
- Deutsches Zentrum für Lungenforschung, Gießen, Deutschland
| | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München, München, Deutschland
| | - Monika Raulf
- Abteilung Kompetenz-Zentrum Allergologie/Immunologie, Institut für Prävention und Arbeitsmedizin der DGUV, Institut der Ruhr-Universität Bochum (IPA), Bochum, Deutschland
| | - Beate Rehbock
- Privatpraxis für Diagnostische Radiologie und Begutachtung, Berlin, Deutschland
| | - Jens Schreiber
- Universitätsklinik für Pneumologie, Universitätsklinikum Magdeburg, Magdeburg, Deutschland
| | - Helmut Sitter
- Institut für Theoretische Chirurgie, Philipps-Universität Marburg, Marburg, Deutschland
| | - Dirk Theegarten
- Institut für Pathologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Ulrich Costabel
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
2
|
Calabrese F, Montero-Fernandez MA, Kern I, Pezzuto F, Lunardi F, Hofman P, Berezowska S, Attanoos R, Burke L, Mason P, Balestro E, Molina Molina M, Giraudo C, Prosch H, Brcic L, Galateau-Salle F. The role of pathologists in the diagnosis of occupational lung diseases: an expert opinion of the European Society of Pathology Pulmonary Pathology Working Group. Virchows Arch 2024; 485:173-195. [PMID: 39030439 PMCID: PMC11329671 DOI: 10.1007/s00428-024-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Occupational lung/thoracic diseases are a major global public health issue. They comprise a diverse spectrum of health conditions with complex pathology, most of which arise following chronic heavy workplace exposures to various mineral dusts, metal fumes, or following inhaled organic particulate reactions. Many occupational lung diseases could become irreversible; thus accurate diagnosis is mandatory to minimize dust exposure and consequently reduce damage to the respiratory system. Lung biopsy is usually required when exposure history is inconsistent with imaging, in case of unusual or new exposures, in case of unexpected malignancy, and in cases in which there are claims for personal injury and legal compensation. In this paper, we provide an overview of the most frequent occupational lung diseases with a focus on pathological diagnosis. This is a paper that summarizes the expert opinion from a group of European pathologists, together with contributions from other specialists who are crucial for the diagnosis and management of these diseases. Indeed, tight collaboration of all specialists involved in the workup is mandatory as many occupational lung diseases are misdiagnosed or go unrecognized. This document provides a guide for pathologists in practice to facilitate the accurate diagnosis of occupational lung disease. The review article reports relevant topics discussed during an educational course held by expert pathologists, active members of the Pulmonary Pathology Working Group of the European Society of Pathology. The course was endorsed by the University of Padova as a "winter school" (selected project in the call for "Shaping a World-class University" 2022).
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy.
| | | | - Izidor Kern
- Cytology and Pathology Laboratory, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Nice Hospital, University Côte d'Azur, Nice, France
| | - Sabina Berezowska
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Richard Attanoos
- Department of Cellular Pathology, Cardiff University, Cardiff, UK
| | - Louise Burke
- Department of Histopathology, Cork University Hospital, Cork, Ireland
| | - Paola Mason
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | | | - Maria Molina Molina
- Respiratory Department, University Hospital of Bellvitge, IDIBELL, CIBERES, L'Hospitalet de Llobregat, Spain
| | - Chiara Giraudo
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | - Helmut Prosch
- Division of Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Luka Brcic
- Diagnostic and Research Centre for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
3
|
Experimental Models of Pulmonary Fibrosis and their Translational Potential. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2019-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Pulmonary fibrosis, represented mainly by idiopathic pulmonary fibrosis, develops chronic and progressive changes in lung parenchyma with high mortality and limited therapeutic options. The aim of this review was to summarize the most common experimental models used in the research of pulmonary fibrosis. Lung damage associated with development of pulmonary fibrosis can be caused by irradiation or by instillation of bleomycin, fluorescein isothiocyanate (FITC), silicon dioxide (silica), asbestos, etc. This article reviews the characteristics of the most frequently used animal models of fibrosis, including the limitations of their use. Although none of the used animal models resembles completely the changes in human pulmonary fibrosis, similarities between them allow preclinical testing of novel treatment approaches or their combinations in the laboratory conditions before their use in the clinical practice.
Collapse
|
4
|
Toyokuni S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: Toward the era of mesothelioma prevention. Free Radic Biol Med 2019; 133:206-215. [PMID: 30312759 DOI: 10.1016/j.freeradbiomed.2018.10.401] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
Abstract
Cancer is the primary cause of human mortality in most countries. This tendency has increased as various medical therapeutics have advanced, which suggests that we cannot escape carcinogenesis, although the final outcome may be modified by exposomes and statistics. Cancer is classified by its cellular differentiation. Mesothelial cells are distinct in that they line somatic cavities, facilitating the smooth movement of organs, but are not exposed to the external environment. Malignant mesothelioma, or simply mesothelioma, develops either in the pleural, peritoneal or pericardial cavities, or in the tunica vaginalis testes. Mesothelioma has been a relatively rare cancer but is socially important due to its association with asbestos exposure, caused by modern industrial development. The major pathogenic mechanisms include oxidative stress either via catalytic reactions against the asbestos surface or frustrated phagocytosis of macrophages, and specific adsorption of hemoglobin and histones by asbestos fibers in the presence of phagocytic activity of mesothelial cells. Multiwall carbon nanotubes of ~50 nm-diameter, additionally adsorbing transferrin, are similarly carcinogenic to mesothelial cells in rodents and were thus classified as Group 2B carcinogens. Genetic alterations found in human and rat mesothelioma notably contain changes found in other excess iron-induced carcinogenesis models. Phlebotomy and iron chelation therapies have been successful in the prevention of mesothelioma in rats. Alternatively, loading of oxidative stress by non-thermal plasma to mesothelioma cells causes ferroptosis. Therefore, carcinogenesis by foreign fibrous inorganic materials may overlap the uncovered molecular mechanisms of birth of life and its evolution.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Sydney Medical School, The University of Sydney, NSW, Australia.
| |
Collapse
|
5
|
Zajaczkowska M, Johnson A, Gallur L, Shin J, Henderson C, Williamson J. Transbronchial lung cryobiopsy: a novel confirmatory tool to diagnose asbestos-related pulmonary fibrosis. Respirol Case Rep 2019; 7:e00380. [PMID: 30455954 PMCID: PMC6226387 DOI: 10.1002/rcr2.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
Asbestosis is diagnosed with a combination of historical, clinical and radiological findings in the absence of another cause. Histology is required when uncertainty exists, with lung biopsy via VATs being gold standard. Transbronchial cryobiopsy is becoming increasingly popular for diagnosing interstitial lung disease and may provide sufficient lung sample to demonstrate asbestosis. A 73 year old man presented with dyspnoea on a background of rheumatoid arthritis, previous methotrexate use and asbestos exposure. Examination revealed fine crackles in the mid and lower zones bilaterally without signs of pulmonary hypertension. The presence of pleural plaques and basal interstitial reticulation on HRCT was suggestive of asbestosis but histology was required to differentiate this from rheumatoid or methotrexate associated ILD. Samples of lung tissue were obtained via transbronchial cryobiopsy, demonstrating fibrosis and asbestos fibres consistent with asbestosis. Transbronchial cryobiopsy appears effective in obtaining sufficient parenchymal lung samples to diagnose asbestosis when clinical uncertainty exists.
Collapse
Affiliation(s)
- Marta Zajaczkowska
- Department of Respiratory and Sleep MedicineLiverpool HospitalSydney, New South WalesAustralia
| | - Anthony Johnson
- Respiratory, Sleep and Environmental and Occupational Health (RSEOH)The Ingham Institute of Applied Medical ResearchSydney, New South WalesAustralia
| | - Luis Gallur
- Department of AnaesthesiaLiverpool HospitalSydney, New South WalesAustralia
| | - Joo Shin
- Department of Anatomical PathologyLiverpool HospitalSydney, New South WalesAustralia
| | - Christopher Henderson
- Department of Anatomical PathologyLiverpool HospitalSydney, New South WalesAustralia
- School of Medicine, University of Western SydneySydney, New South WalesAustralia
- South Western Clinical School, University of New South WalesSydney, New South WalesAustralia
| | - Jonathan Williamson
- Department of Respiratory and Sleep MedicineLiverpool HospitalSydney, New South WalesAustralia
- Respiratory, Sleep and Environmental and Occupational Health (RSEOH)The Ingham Institute of Applied Medical ResearchSydney, New South WalesAustralia
- MQ Respiratory and SleepMacquarie University Hospital and Clinic, Macquarie UniversitySydney, New South WalesAustralia
| |
Collapse
|
6
|
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem 2018; 62:2841. [PMID: 29569878 PMCID: PMC5907194 DOI: 10.4081/ejh.2018.2841] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.
Collapse
Affiliation(s)
- Manuel Scimeca
- University of Rome "Tor Vergata", Department of Biomedicine and Prevention.
| | | | | | | | | |
Collapse
|
7
|
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2017; 4:118. [PMID: 28804709 PMCID: PMC5532376 DOI: 10.3389/fmed.2017.00118] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans.
Collapse
Affiliation(s)
- Jun Tashiro
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gustavo A Rubio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andrew H Limper
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Kurt Williams
- Department Pathobiology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Sharon J Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioanna Ninou
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|