1
|
Zhang W, Fine JL, Pei X, Cao Y, Liu Y, Yan J, Ban Z, Zhang T, Wei Y, Zhao X, Wang B, Zhao C, Zeng X. Characteristics and utility of high-resolution optical coherence microscopy images of endocervical canal lesions. Am J Clin Pathol 2024; 162:392-400. [PMID: 38704601 DOI: 10.1093/ajcp/aqae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/06/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVES To investigate optical coherence microscopy (OCM) imaging features and the application value of these high-resolution images for identifying endocervical canal lesions (ECLs), which is a clinical dilemma in cervical cancer screening programs. METHODS In total, 520 OCM images were obtained by scanning the cervical canal lesions with an ultra-high-resolution OCM system (204 specimens from 73 patients). The OCM morphologic characteristics of ECLs were observed and summarized, and then 3 researchers performed a diagnostic test of OCM images of cervical canal lesions. The accuracy, sensitivity, specificity, positive predictive value, negative predictive value, 95% confidence interval of each parameter, and interinvestigator agreement (κ) were calculated. RESULTS Normal endocervix, cysts, squamous metaplasia, high-grade squamous intraepithelial lesions involving glands, and invasive carcinoma had distinct OCM characteristics, which correlated well with corresponding H&E histologic sections. The accuracy, sensitivity, and specificity of the 3 researchers were 90.6%, 89.3% (95% CI, 86.5%-91.7%) and 91.6% (95% CI, 89.2%-93.5%), respectively. The positive predictive value was 90.1% (95% CI, 87.3%-92.4%), and the negative predictive value was 90.9% (95% CI, 88.5%-92.9%), with almost perfect agreement (κ = 0.874). CONCLUSIONS The application of the OCM system in cervical canal lesions is feasible and could help improve detection of occult ECLs in cervical cancer screening programs. This study lays the foundation for further research on OCM in cervical canal lesions in vivo, which also has a potential impact on projecting pathologic evaluation beyond what is currently possible, perhaps globally.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jeffrey L Fine
- Department of Pathology, UPMC Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, US
| | - Xiaoyin Pei
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yushan Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixuan Liu
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Yan
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenying Ban
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting Zhang
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Wei
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baojin Wang
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengquan Zhao
- Department of Pathology, UPMC Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, US
| | - Xianxu Zeng
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Abbaci M, Villard A, Auperin A, Asmandar S, Moya-Plana A, Casiraghi O, Breuskin I. Ultra-fast confocal fluorescence microscopy for neck lymph node imaging in head and neck cancer. Oral Oncol 2024; 154:106862. [PMID: 38820885 DOI: 10.1016/j.oraloncology.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES We evaluated ultra-fast confocal fluorescence microscopy (UFCM) as a new modality for pathology practice in head and neck cancer (HNC). This was assessed through an ex vivo study to estimate the accuracy, specificity, and sensitivity of interpretation of UFCM images by pathologists for the detection of metastatic lymph nodes in HNC patients undergoing sentinel lymph node biopsy or selective or complete neck dissection. MATERIALS AND METHODS 44 patients with 32 cN0 and 12 cN+ HNC were included. The macroscopically non-invaded fresh bisected lymph nodes were stained with acridine orange and imaged with Histolog® Scanner (UFCM). Two pathologists interpreted independently the UFCM images postoperatively and gave a consensus diagnosis in case of disagreement. The gold standard was the diagnosis based on hematoxylin-eosin-saffron (HES) sections. RESULTS 201 lymph nodes were imaged by UFCM. Thirty nodes (15 %) were invaded on final histology: 3 with micrometastases and 27 with macrometastases. The concordance rate between the pathologists on the UFCM images was 192/201 = 95.5 % and the Cohen kappa coefficient was 0.80. The accuracy of UFCM was 95.5 % (95 %CI: 91.7 %-97.9 %) with a high specificity at 98.8 % (95 %CI: 95.8 %-99.9 %) but an insufficient sensitivity at 76.7 % (95 %CI: 57.7 %-90.1 %). The three micrometastases and four of the 27 macrometastases were missed on UFCM images. CONCLUSION The UFCM is providing promising detection values with a very good specificity and moderate sensitivity carrying room for improvement.
Collapse
Affiliation(s)
- Muriel Abbaci
- Gustave Roussy, Plate-forme Imagerie et Cytométrie, UMS 23/3655, Université Paris-Saclay, Villejuif, France; Gustave Roussy, Surgery and Pathology Photonic Imaging group, Villejuif, France.
| | - Adrien Villard
- Gustave Roussy, Surgery and Pathology Photonic Imaging group, Villejuif, France; Gustave Roussy, Département de Cancérologie et de chirurgie Cervico-Faciale, Université Paris-Saclay, Villejuif, France
| | - Anne Auperin
- Gustave Roussy, Service de Biostatistique et d'Epidémiologie, Université Paris-Saclay, Villejuif, France; Oncostat CESP - Labeled Ligue Contre le Cancer, INSERM 1018, Université Paris-Saclay, UVSQ, Villejuif, France
| | - Safaa Asmandar
- Gustave Roussy, Département de Biologie et Pathologie Médicale, Université Paris-Saclay, Villejuif, France
| | - Antoine Moya-Plana
- Gustave Roussy, Département de Cancérologie et de chirurgie Cervico-Faciale, Université Paris-Saclay, Villejuif, France
| | - Odile Casiraghi
- Gustave Roussy, Surgery and Pathology Photonic Imaging group, Villejuif, France; Gustave Roussy, Département de Biologie et Pathologie Médicale, Université Paris-Saclay, Villejuif, France
| | - Ingrid Breuskin
- Gustave Roussy, Surgery and Pathology Photonic Imaging group, Villejuif, France; Gustave Roussy, Département de Cancérologie et de chirurgie Cervico-Faciale, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
3
|
Pillar N, Li Y, Zhang Y, Ozcan A. Virtual Staining of Nonfixed Tissue Histology. Mod Pathol 2024; 37:100444. [PMID: 38325706 DOI: 10.1016/j.modpat.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Surgical pathology workflow involves multiple labor-intensive steps, such as tissue removal, fixation, embedding, sectioning, staining, and microscopic examination. This process is time-consuming and costly and requires skilled technicians. In certain clinical scenarios, such as intraoperative consultations, there is a need for faster histologic evaluation to provide real-time surgical guidance. Currently, frozen section techniques involving hematoxylin and eosin (H&E) staining are used for intraoperative pathology consultations. However, these techniques have limitations, including a turnaround time of 20 to 30 minutes, staining artifacts, and potential tissue loss, negatively impacting accurate diagnosis. To address these challenges, researchers are exploring alternative optical imaging modalities for rapid microscopic tissue imaging. These modalities differ in optical characteristics, tissue preparation requirements, imaging equipment, and output image quality and format. Some of these imaging methods have been combined with computational algorithms to generate H&E-like images, which could greatly facilitate their adoption by pathologists. Here, we provide a comprehensive, organ-specific review of the latest advancements in emerging imaging modalities applied to nonfixed human tissue. We focused on studies that generated H&E-like images evaluated by pathologists. By presenting up-to-date research progress and clinical utility, this review serves as a valuable resource for scholars and clinicians, covering some of the major technical developments in this rapidly evolving field. It also offers insights into the potential benefits and drawbacks of alternative imaging modalities and their implications for improving patient care.
Collapse
Affiliation(s)
- Nir Pillar
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California.
| |
Collapse
|
4
|
Monfort T, Azzollini S, Brogard J, Clémençon M, Slembrouck-Brec A, Forster V, Picaud S, Goureau O, Reichman S, Thouvenin O, Grieve K. Dynamic full-field optical coherence tomography module adapted to commercial microscopes allows longitudinal in vitro cell culture study. Commun Biol 2023; 6:992. [PMID: 37770552 PMCID: PMC10539404 DOI: 10.1038/s42003-023-05378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as a label-free imaging tool, capable of resolving cell types and organelles within 3D live samples, whilst monitoring their activity at tens of milliseconds resolution. Here, a D-FFOCT module design is presented which can be coupled to a commercial microscope with a stage top incubator, allowing non-invasive label-free longitudinal imaging over periods of minutes to weeks on the same sample. Long term volumetric imaging on human induced pluripotent stem cell-derived retinal organoids is demonstrated, highlighting tissue and cell organization processes such as rosette formation and mitosis as well as cell shape and motility. Imaging on retinal explants highlights single 3D cone and rod structures. An optimal workflow for data acquisition, postprocessing and saving is demonstrated, resulting in a time gain factor of 10 compared to prior state of the art. Finally, a method to increase D-FFOCT signal-to-noise ratio is demonstrated, allowing rapid organoid screening.
Collapse
Affiliation(s)
- Tual Monfort
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France
| | - Salvatore Azzollini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Jérémy Brogard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Marilou Clémençon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Amélie Slembrouck-Brec
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Valerie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Olivier Thouvenin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012, Paris, France.
- Paris Eye Imaging Group, Quinze-Vingts National Eye Hospital, INSERM-DGOS, CIC 1423, 28 rue de Charenton, Paris, 75012, France.
| |
Collapse
|
5
|
Duan Y, Guo D, Zhang X, Lan L, Meng H, Wang Y, Sui C, Qu Z, He G, Wang C, Liu X. Diagnostic accuracy of optical coherence tomography for margin assessment in breast-conserving surgery: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2023; 43:103718. [PMID: 37482370 DOI: 10.1016/j.pdpdt.2023.103718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor among women, and its incidence is increasing annually. At present, the results of the study on whether optical coherence tomography (OCT) can be used as an intraoperative margin assessment method for breast-conserving surgery (BCS) are inconsistent. We herein conducted this systematic review and meta-analysis to assess the diagnostic value of OCT in BCS. METHODS PubMed, Web of Science, Cochrane Library, and Embase were used to search relevant studies published up to September 15, 2022. We used Review Manager 5.4, Meta-Disc 1.4, and STATA 16.0 for statistical analysis. RESULTS The results displayed 18 studies with 782 patients included according to the inclusion and exclusion criteria. Meta-analysis showed the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and the area under the curve (AUC) of OCT in the margin assessment of BCS were 0.91 (95% CI 0.88-0.93), 0.88 (95% CI 0.83-0.92), 7.53 (95% CI 5.19-10.93), 0.11(95% CI 0.08-0.14), 70.37 (95% CI 39.78-124.47), and 0.94 (95% CI 0.92-0.96), respectively. CONCLUSIONS OCT is a promising technique in intraoperative margin assessment of breast cancer patients.
Collapse
Affiliation(s)
- Yuqing Duan
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Dingjie Guo
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Linwei Lan
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Hengyu Meng
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yashan Wang
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chuanying Sui
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Zihan Qu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guangliang He
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunpeng Wang
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China.
| | - Xin Liu
- Department of Epidemiology and Statistics, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
The Use of Optical Coherence Tomography for Gross Examination and Sampling of Fixed Breast Specimens: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12092191. [PMID: 36140591 PMCID: PMC9498270 DOI: 10.3390/diagnostics12092191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Thorough gross examination of breast cancer specimens is critical in order to sample relevant portions for subsequent microscopic examination. This task would benefit from an imaging tool which permits targeted and accurate block selection. Optical coherence tomography (OCT) is a non-destructive imaging technique that visualizes tissue architecture and has the potential to be an adjunct at the gross bench. Our objectives were: (1) to familiarize pathologists with the appearance of breast tissue entities on OCT; and (2) to evaluate the yield and quality of OCT images of unprocessed, formalin-fixed breast specimens for the purpose of learning and establishment of an OCT–histopathology library. Methods: Firstly, 175 samples from 40 formalin-fixed, unprocessed breast specimens with residual tissue after final diagnosis were imaged with OCT and then processed into histology slides. Histology findings were correlated with features on OCT. Results: Residual malignancy was seen in 30% of tissue samples. Corresponding OCT images demonstrated that tumor can be differentiated from fibrous stroma, based on features such as irregular boundary, heterogeneous texture and reduced penetration depth. Ductal carcinoma in situ can be subtle, and it is made more recognizable by the presence of comedo necrosis and calcifications. OCT features of benign and malignant breast entities were compiled in a granular but user-friendly reference tool. Conclusion: OCT images of fixed breast tissue were of sufficient quality to reproduce features of breast entities previously described in fresh tissue specimens. Our findings support the use of readily available unprocessed, fixed breast specimens for the establishment of an OCT–histopathology library.
Collapse
|
7
|
Xu Y, Abramov I, Belykh E, Mignucci-Jiménez G, Park MT, Eschbacher JM, Preul MC. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging. Front Oncol 2022; 12:979748. [PMID: 36091140 PMCID: PMC9451600 DOI: 10.3389/fonc.2022.979748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters – brightness and contrast – were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.
Collapse
Affiliation(s)
- Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Giancarlo Mignucci-Jiménez
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Marian T. Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- *Correspondence: Mark C. Preul,
| |
Collapse
|
8
|
Zhao J, Kulkarni N, Dobo E, Khan MJ, Yang E, Kang D. Investigation of different wavelengths for scattering-based light sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3882-3892. [PMID: 35991931 PMCID: PMC9352285 DOI: 10.1364/boe.459823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 05/30/2023]
Abstract
Scattering-based light sheet microscopy (sLSM) is a microscopy technique that can visualize cellular morphologic details based on the scattering signal. While sLSM was previously shown to image animal tissues ex vivo at a cellular resolution, the wavelength used was chosen based on other in vivo microscopy technologies rather than through a comparison of the sLSM imaging performance between different wavelengths. In this paper, we report the development of a multi-wavelength sLSM setup that facilitates the investigation of different wavelengths for sLSM imaging. Preliminary results of imaging human anal tissues ex vivo showed that the sLSM setup allowed for comparisons of the cellular imaging performance at the same tissue location between different wavelengths. Both the quantitative analysis of the image contrast and the visual assessment by a pathologist showed that the imaging depth increased with wavelength, and the imaging depth increase was most notable around 600 nm. The preliminary results showed that the multi-wavelength sLSM setup could be useful in identifying the optimal wavelength for the specific tissue type.
Collapse
Affiliation(s)
- Jingwei Zhao
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Nachiket Kulkarni
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Erika Dobo
- School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Michelle J Khan
- School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Eric Yang
- School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Dongkyun Kang
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
9
|
Bishop KW, Maitland KC, Rajadhyaksha M, Liu JTC. In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220032-PER. [PMID: 35478042 PMCID: PMC9043840 DOI: 10.1117/1.jbo.27.4.040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE There have been numerous academic and commercial efforts to develop high-resolution in vivo microscopes for a variety of clinical use cases, including early disease detection and surgical guidance. While many high-profile studies, commercialized products, and publications have resulted from these efforts, mainstream clinical adoption has been relatively slow other than for a few clinical applications (e.g., dermatology). AIM Here, our goals are threefold: (1) to introduce and motivate the need for in vivo microscopy (IVM) as an adjunctive tool for clinical detection, diagnosis, and treatment, (2) to discuss the key translational challenges facing the field, and (3) to propose best practices and recommendations to facilitate clinical adoption. APPROACH We will provide concrete examples from various clinical domains, such as dermatology, oral/gastrointestinal oncology, and neurosurgery, to reinforce our observations and recommendations. RESULTS While the incremental improvement and optimization of IVM technologies should and will continue to occur, future translational efforts would benefit from the following: (1) integrating clinical and industry partners upfront to define and maintain a compelling value proposition, (2) identifying multimodal/multiscale imaging workflows, which are necessary for success in most clinical scenarios, and (3) developing effective artificial intelligence tools for clinical decision support, tempered by a realization that complete adoption of such tools will be slow. CONCLUSIONS The convergence of imaging modalities, academic-industry-clinician partnerships, and new computational capabilities has the potential to catalyze rapid progress and adoption of IVM in the next few decades.
Collapse
Affiliation(s)
- Kevin W. Bishop
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Kristen C. Maitland
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington, United States
- Address all correspondence to Jonathan T.C. Liu,
| |
Collapse
|
10
|
Villard A, Breuskin I, Casiraghi O, Asmandar S, Laplace-Builhe C, Abbaci M, Moya Plana A. Confocal laser endomicroscopy and confocal microscopy for head and neck cancer imaging: Recent updates and future perspectives. Oral Oncol 2022; 127:105826. [DOI: 10.1016/j.oraloncology.2022.105826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
|
11
|
Is Real-Time Microscopy on the Horizon? A Brief Review of the Potential Future Directions in Clinical Breast Tumor Microscopy Implementation. Virchows Arch 2022; 480:211-227. [PMID: 35218378 DOI: 10.1007/s00428-022-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
We will briefly review the current paradigm and some recent developments in the area of clinical breast microscopy, highlighting several promising commercially available, and research-based platforms. Confocal microscopy (reflectance, fluorescence, and spectrally encoded), optical coherence tomography (wide field and full field), stereomicroscopy, open-top light sheet microscopy, microscopy with ultraviolet surface excitation, nonlinear microscopy, Raman scattering microscopy, photoacoustic microscopy, and needle microendoscopy will be discussed. Non-microscopic methods for breast pathology assessment are beyond the scope of this review. These microscopic technologies have to varying degrees the potential for transforming breast cancer care, but in order for any of these to be integrated into clinical practice there are several hurdles to overcome. In our review we will focus on what needs to be done in order for the commercially available technologies to become more established, what the technologies in the research domain need to do in order to reach the commercial realm; and finally, what the field of breast pathology might look like if these technologies were to be widely adopted.
Collapse
|
12
|
Titze U, Sievert KD, Titze B, Schulz B, Schlieker H, Madarasz Z, Weise C, Hansen T. Ex Vivo Fluorescence Confocal Microscopy in Specimens of the Liver: A Proof-of-Concept Study. Cancers (Basel) 2022; 14:590. [PMID: 35158859 PMCID: PMC8833349 DOI: 10.3390/cancers14030590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ex vivo Fluorescence Confocal Microscopy (FCM) is a technique providing high-resolution images of native tissues. The method is increasingly used in surgical settings in areas of dermatology and urology. Only a few publications exist about examinations of tumors and non-neoplastic lesions of the liver. We report on the application of FCM in biopsies, surgical specimens and autopsy material (33 patients, 39 specimens) of the liver and compare the results to conventional histology. Our preliminary examinations indicated a perfect suitability for tumor diagnosis (ĸ = 1.00) and moderate/good suitability for the assessment of inflammation (ĸ = 0.4-0.6) with regard to their severity and localization. Macro-vesicular steatosis was reliably detected, micro-vesicular steatosis tended to be underestimated. Cholestasis and eosinophilic granules in granulocytes were not represented in the scans. The tissue was preserved as native material and maintained its quality for downstream histological, immunohistological and molecular examinations. In summary, FCM is a material sparing method that provides rapid feedback to the clinician about the presence of tumor, the degree of inflammation and structural changes. This can lead to faster therapeutic decisions in the management of liver tumors, treatment of hepatitis or in liver transplant medicine.
Collapse
Affiliation(s)
- Ulf Titze
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Karl-Dietrich Sievert
- Department of Urology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Barbara Titze
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Birte Schulz
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Heiko Schlieker
- Department of Gastroenterology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Zsolt Madarasz
- Department of General Surgery, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Christian Weise
- Department of Pediatrics, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Torsten Hansen
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| |
Collapse
|
13
|
Bompoti A, Papazoglou AS, Moysidis DV, Otountzidis N, Karagiannidis E, Stalikas N, Panteris E, Ganesh V, Sanctuary T, Arvanitidis C, Sianos G, Michaelson JS, Herrmann MD. Volumetric Imaging of Lung Tissue at Micrometer Resolution: Clinical Applications of Micro-CT for the Diagnosis of Pulmonary Diseases. Diagnostics (Basel) 2021; 11:diagnostics11112075. [PMID: 34829422 PMCID: PMC8625264 DOI: 10.3390/diagnostics11112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-computed tomography (micro-CT) is a promising novel medical imaging modality that allows for non-destructive volumetric imaging of surgical tissue specimens at high spatial resolution. The aim of this study is to provide a comprehensive assessment of the clinical applications of micro-CT for the tissue-based diagnosis of lung diseases. This scoping review was conducted in accordance with the PRISMA Extension for Scoping Reviews, aiming to include every clinical study reporting on micro-CT imaging of human lung tissues. A literature search yielded 570 candidate articles, out of which 37 were finally included in the review. Of the selected studies, 9 studies explored via micro-CT imaging the morphology and anatomy of normal human lung tissue; 21 studies investigated microanatomic pulmonary alterations due to obstructive or restrictive lung diseases, such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and cystic fibrosis; and 7 studies examined the utility of micro-CT imaging in assessing lung cancer lesions (n = 4) or in transplantation-related pulmonary alterations (n = 3). The selected studies reported that micro-CT could successfully detect several lung diseases providing three-dimensional images of greater detail and resolution than routine optical slide microscopy, and could additionally provide valuable volumetric insight in both restrictive and obstructive lung diseases. In conclusion, micro-CT-based volumetric measurements and qualitative evaluations of pulmonary tissue structures can be utilized for the clinical management of a variety of lung diseases. With micro-CT devices becoming more accessible, the technology has the potential to establish itself as a core diagnostic imaging modality in pathology and to enable integrated histopathologic and radiologic assessment of lung cancer and other lung diseases.
Collapse
Affiliation(s)
- Andreana Bompoti
- Department of Radiology, Peterborough City Hospital, Northwest Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK;
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Dimitrios V. Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Nikolaos Otountzidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - Eleftherios Panteris
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., P.O. Box 8318, GR 57001 Thessaloniki, Greece;
| | | | - Thomas Sanctuary
- Respiratory Department, Medway NHS Foundation Trust, Kent ME7 5NY, UK;
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 70013 Heraklion, Greece;
- LifeWatch ERIC, Sector II-II, Plaza de España, 41071 Seville, Spain
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (A.S.P.); (D.V.M.); (N.O.); (E.K.); (N.S.); (G.S.)
| | - James S. Michaelson
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Markus D. Herrmann
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Correspondence: ; Tel.: +6-17-724-1896
| |
Collapse
|
14
|
Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep Learning in Biomedical Optics. Lasers Surg Med 2021; 53:748-775. [PMID: 34015146 PMCID: PMC8273152 DOI: 10.1002/lsm.23414] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
This article reviews deep learning applications in biomedical optics with a particular emphasis on image formation. The review is organized by imaging domains within biomedical optics and includes microscopy, fluorescence lifetime imaging, in vivo microscopy, widefield endoscopy, optical coherence tomography, photoacoustic imaging, diffuse tomography, and functional optical brain imaging. For each of these domains, we summarize how deep learning has been applied and highlight methods by which deep learning can enable new capabilities for optics in medicine. Challenges and opportunities to improve translation and adoption of deep learning in biomedical optics are also summarized. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- L. Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - B. Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - M. A. L. Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - J. Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - J. T. Smith
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - M. Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - X. Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - N. J. Durr
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Thrapp AD, Hughes MR. Reduced motion artifacts and speed improvements in enhanced line-scanning fiber bundle endomicroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200390R. [PMID: 33988004 PMCID: PMC8116667 DOI: 10.1117/1.jbo.26.5.056501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Confocal laser scanning enables optical sectioning in fiber bundle endomicroscopy but limits the frame rate. To be able to better explore tissue morphology, it is useful to stitch sequentially acquired frames into a mosaic. However, low frame rates limit the maximum probe translation speed. Line-scanning (LS) confocal endomicroscopy provides higher frame rates, but residual out-of-focus light degrades images. Subtraction-based approaches can suppress this residue at the expense of introducing motion artifacts. AIM To generate high-frame-rate endomicroscopy images with improved optical sectioning, we develop a high-speed subtraction method that only requires the acquisition of a single camera frame. APPROACH The rolling shutter of a CMOS camera acts as both the aligned and offset detector slits required for subtraction-based sectioning enhancement. Two images of the bundle are formed on different regions of the camera, allowing both images to be acquired simultaneously. RESULTS We confirm improved optical sectioning compared to conventional LS, particularly far from focus, and show that motion artifacts are not introduced. We demonstrate high-speed mosaicing at frame rates of up to 240 Hz. CONCLUSION High-speed acquisition of optically sectioned images using the new subtraction based-approach leads to improved mosaicing at high frame rates.
Collapse
Affiliation(s)
- Andrew D. Thrapp
- University of Kent, School of Physical Sciences, Applied Optics Group, Canterbury, United Kingdom
| | - Michael R. Hughes
- University of Kent, School of Physical Sciences, Applied Optics Group, Canterbury, United Kingdom
| |
Collapse
|
16
|
Impens F, Dussurget O. Three decades of listeriology through the prism of technological advances. Cell Microbiol 2021; 22:e13183. [PMID: 32185895 DOI: 10.1111/cmi.13183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host-pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.
Collapse
Affiliation(s)
- Francis Impens
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department for Biomedical Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Hacking S, Bijol V. Deep learning for the classification of medical kidney disease: a pilot study for electron microscopy. Ultrastruct Pathol 2021; 45:118-127. [PMID: 33583322 DOI: 10.1080/01913123.2021.1882628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Artificial intelligence (AI) is a new frontier and often enigmatic for medical professionals. Cloud computing could open up the field of computer vision to a wider medical audience and deep learning on the cloud allows one to design, develop, train and deploy applications with ease. In the field of histopathology, the implementation of various applications in AI has been successful for whole slide images rich in biological diversity. However, the analysis of other tissue medias, including electron microscopy, is yet to be explored. The present study aims to evaluate deep learning for the classification of medical kidney disease on electron microscopy images: amyloidosis, diabetic glomerulosclerosis, membranous nephropathy, membranoproliferative glomerulonephritis (MPGN), and thin basement membrane disease (TBMD). We found good overall classification with the MedKidneyEM-v1 Classifier and when looking at normal and diseased kidneys, the average area under the curve for precision and recall was 0.841. The average area under the curve for precision and recall on the disease only cohort was 0.909. Digital pathology will shape a new era for medical kidney disease and the present study demonstrates the feasibility of deep learning for electron microscopy. Future approaches could be used by renal pathologists to improve diagnostic concordance, determine therapeutic strategies, and optimize patient outcomes in a true clinical environment.
Collapse
Affiliation(s)
- Sean Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, Manhasset, New York, USA
| | - Vanesa Bijol
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, Manhasset, New York, USA
| |
Collapse
|
18
|
Alizadeh-Tabrizi N, Hall S, Lehmann C. Intravital Imaging of Pulmonary Immune Response in Inflammation and Infection. Front Cell Dev Biol 2021; 8:620471. [PMID: 33520993 PMCID: PMC7843704 DOI: 10.3389/fcell.2020.620471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
Intravital microscopy (IVM) is a unique imaging method providing insights in cellular functions and interactions in real-time, without the need for tissue extraction from the body. IVM of the lungs has specific challenges such as restricted organ accessibility, respiratory movements, and limited penetration depth. Various surgical approaches and microscopic setups have been adapted in order to overcome these challenges. Among others, these include the development of suction stabilized lung windows and the use of more advanced optical techniques. Consequently, lung IVM has uncovered mechanisms of leukocyte recruitment and function in several models of pulmonary inflammation and infection. This review focuses on bacterial pneumonia, aspiration pneumonia, sepsis-induced acute lung Injury, and cystic fibrosis, as examples of lung inflammation and infection. In addition, critical details of intravital imaging techniques of the lungs are discussed.
Collapse
Affiliation(s)
| | - Stefan Hall
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
Smith ML, Hariri LP, Mino-Kenudson M, Dacic S, Attanoos R, Borczuk A, Colby TV, Cooper W, Jones KD, Leslie KO, Mahar A, Larsen BT, Cavazza A, Fukuoka J, Roden AC, Sholl LM, Tazelaar HD, Churg A, Beasley MB. Histopathologic Assessment of Suspected Idiopathic Pulmonary Fibrosis: Where We Are and Where We Need to Go. Arch Pathol Lab Med 2021; 144:1477-1489. [PMID: 32614648 DOI: 10.5858/arpa.2020-0052-ra] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Accurate diagnosis of idiopathic pulmonary fibrosis (IPF) requires multidisciplinary diagnosis that includes clinical, radiologic, and often pathologic assessment. In 2018, the American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and the Latin American Thoracic Society (ATS/ERS/JRS/ALAT) and the Fleischner Society each published guidelines for the diagnosis of IPF, which include criteria for 4 categories of confidence of a histologic usual interstitial pneumonia (UIP) pattern. OBJECTIVE.— To (1) identify the role of the guidelines in pathologic assessment of UIP; (2) analyze the 4 guideline categories, including potential areas of difficulty; and (3) determine steps the Pulmonary Pathology Society and the greater pulmonary pathology community can take to improve current guideline criteria and histopathologic diagnosis of interstitial lung disease. DATA SOURCES.— Data were derived from the guidelines, published literature, and clinical experience. CONCLUSIONS.— Both guidelines provide pathologists with a tool to relay to the clinician the likelihood that a biopsy represents UIP, and serve as an adjunct, not a replacement, for traditional histologic diagnosis. There are multiple challenges with implementing the guidelines, including (1) lack of clarity on the quantity and quality of histologic findings required, (2) lack of recognition that histologic features cannot be assessed independently, and (3) lack of guidance on how pathologists should incorporate clinical and radiographic information. Current criteria for "probable UIP" and "indeterminate for UIP" hinder accurate reflection of the likelihood of IPF. These challenges highlight the need for further morphologic-based investigations in the field of pulmonary pathology.
Collapse
Affiliation(s)
- Maxwell L Smith
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale (Smith, Colby, Leslie, Larsen, Tazelaar)
| | - Lida P Hariri
- the Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston (Hariri, Mino-Kenudson)
| | - Mari Mino-Kenudson
- the Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston (Hariri, Mino-Kenudson)
| | - Sanja Dacic
- the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dacic)
| | - Richard Attanoos
- School of Medicine, Cardiff University, Cardiff, United Kingdom (Attanoos)
| | - Alain Borczuk
- the Department of Pathology, Weill Cornell Medicine, New York, New York (Borczuk)
| | - Thomas V Colby
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale (Smith, Colby, Leslie, Larsen, Tazelaar)
| | - Wendy Cooper
- Tissue Pathology and Diagnostic Oncology, NSW Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (Cooper).,Sydney Medical School, University of Sydney, Sydney, NSW, Australia (Cooper)
| | - Kirk D Jones
- the Department of Pathology, University of California San Francisco, San Francisco (Jones)
| | - Kevin O Leslie
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale (Smith, Colby, Leslie, Larsen, Tazelaar)
| | - Annabelle Mahar
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia (Mahar)
| | - Brandon T Larsen
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale (Smith, Colby, Leslie, Larsen, Tazelaar)
| | - Alberto Cavazza
- Pathology Unit, AUSL/IRCCS di Reggio Emilia, Reggio Emilia, Italy (Cavazza)
| | - Jun Fukuoka
- the Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (Fukuoka)
| | - Anja C Roden
- the Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota (Roden)
| | - Lynette M Sholl
- the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Sholl)
| | - Henry D Tazelaar
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale (Smith, Colby, Leslie, Larsen, Tazelaar)
| | - Andrew Churg
- the Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada (Churg)
| | - Mary Beth Beasley
- and the Department of Pathology, Mount Sinai Health System, Icahn School of Medicine, New York, New York (Beasley)
| |
Collapse
|
20
|
Belykh E, Zhao X, Ngo B, Farhadi DS, Byvaltsev VA, Eschbacher JM, Nakaji P, Preul MC. Intraoperative Confocal Laser Endomicroscopy Ex Vivo Examination of Tissue Microstructure During Fluorescence-Guided Brain Tumor Surgery. Front Oncol 2020; 10:599250. [PMID: 33344251 PMCID: PMC7746822 DOI: 10.3389/fonc.2020.599250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Noninvasive intraoperative optical biopsy that provides real-time imaging of histoarchitectural (cell resolution) features of brain tumors, especially at the margin of invasive tumors, would be of great value. To assess clinical-grade confocal laser endomicroscopy (CLE) and to prepare for its use intraoperatively in vivo, we performed an assessment of CLE ex vivo imaging in brain lesions. Methods Tissue samples from patients who underwent intracranial surgeries with fluorescein sodium (FNa)–based wide-field fluorescence guidance were acquired for immediate intraoperative ex vivo optical biopsies with CLE. Hematoxylin-eosin–stained frozen section analysis of the same specimens served as the gold standard for blinded neuropathology comparison. FNa 2 to 5 mg/kg was administered upon induction of anesthesia, and FNa 5 mg/kg was injected for CLE contrast improvement. Histologic features were identified, and the diagnostic accuracy of CLE was assessed. Results Of 77 eligible patients, 47 patients with 122 biopsies were enrolled, including 32 patients with gliomas and 15 patients with other intracranial lesions. The positive predictive value of CLE optical biopsies was 97% for all specimens and 98% for gliomas. The specificity of CLE was 90% for all specimens and 94% for gliomas. The second FNa injection in seven patients, a mean of 2.6 h after the first injection, improved image quality and increased the percentage of accurately diagnosed images from 67% to 93%. Diagnostic CLE features of lesional glioma biopsies and normal brain were identified. Seventeen histologic features were identified. Conclusions Results demonstrated high specificity and positive predictive value of ex vivo intraoperative CLE optical biopsies and justify an in vivo intraoperative trial. This new portable, noninvasive intraoperative imaging technique provides diagnostic features to discriminate lesional tissue with high specificity and is feasible for incorporation into the fluorescence-guided surgery workflow, particularly for patients with invasive brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Brandon Ngo
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Dara S Farhadi
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, The Loyal and Edith Davis Neurosurgical Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
21
|
Kantere D, Siarov J, De Lara S, Parhizkar S, Olofsson Bagge R, Wennberg Larkö A, Ericson MB. Label‐free laser scanning microscopy targeting sentinel lymph node diagnostics: A feasibility study ex vivo. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Despoina Kantere
- Department of Dermatology and Venereology, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Jan Siarov
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Shahin De Lara
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Samad Parhizkar
- Department of Pathology University of Gothenburg Gothenburg Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Ann‐Marie Wennberg Larkö
- Department of Dermatology and Venereology, Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - Marica B. Ericson
- Biomedical photonics group, Department of Chemistry and Molecular Biology University of Gothenburg Gothenburg Sweden
| |
Collapse
|
22
|
Krishnamurthy S, Sabir S, Ban K, Wu Y, Sheth R, Tam A, Meric-Bernstam F, Shaw K, Mills G, Bassett R, Hamilton S, Hicks M, Gupta S. Comparison of Real-Time Fluorescence Confocal Digital Microscopy With Hematoxylin-Eosin-Stained Sections of Core-Needle Biopsy Specimens. JAMA Netw Open 2020; 3:e200476. [PMID: 32134465 PMCID: PMC7059022 DOI: 10.1001/jamanetworkopen.2020.0476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPORTANCE Strategies to procure high-quality core-needle biopsy (CNB) specimens are critical for making basic tissue diagnoses and for ancillary testing. OBJECTIVES To investigate acquisition of fluorescence confocal microscopy (FCM) images of interventional radiology (IR)-guided CNB in real time in the radiology suite and to compare the accuracy of FCM diagnoses with those of hematoxylin-eosin (H&E)-stained CNB sections. DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, FCM imaging of IR-guided CNBs was performed in the radiology suite at a major cancer center for patients with an imaging abnormality from August 1, 2016, to April 30, 2019. The time taken to acquire FCM images and the quality of FCM images based on percentage of interpretable tissue with optimal resolution was recorded. The FCM images were read by 2 pathologists and categorized as nondiagnostic, benign/atypical, or suspicious/malignant; these diagnoses were compared with those made using H&E-stained tissue sections. Cases with discrepant diagnosis were reassessed by the pathologists together for a consensus diagnosis. Data were analyzed from June 3 to July 19, 2019. INTERVENTIONS Each IR-guided CNB was stained with 0.6mM acridine orange, subjected to FCM imaging, and then processed to generate H&E-stained sections. MAIN OUTCOMES AND MEASURES Mean time taken for acquisition of FCM images, quality of FCM images based on interpretable percentage of the image, and accuracy of diagnostic categorization based on FCM images compared with H&E-stained sections. RESULTS A total of 105 patients (57 male [54.3%]; mean [SD] age, 63 [13] years) underwent IR-guided CNBs in a mean (SD) of 7 (2) minutes each. The FCM images showed at least 20% of the tissue with optimal quality in 101 CNB specimens (96.2%). The FCM images were accurately interpreted by the 2 pathologists in 100 of 105 cases (95.2%) (2 false-positive and 3 false-negative) and 90 of 105 cases (85.7%) (6 false-positive and 9 false-negative). A reassessment of 14 discordant diagnoses resulted in consensus diagnoses that were accurate in 101 of 105 cases (96.2%) (1 false-positive and 3 false-negative). CONCLUSIONS AND RELEVANCE The ease of acquisition of FCM images of acceptable quality and the high accuracy of the diagnoses suggest that FCM may be useful for rapid evaluation of IR-guided CNBs. This approach warrants further investigation.
Collapse
Affiliation(s)
- Savitri Krishnamurthy
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Sharjeel Sabir
- Department of Radiology, Scripps Mercy Hospital, San Diego, California
| | - Kechen Ban
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Yun Wu
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Rahul Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Alda Tam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston
| | - Kenna Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston
| | - Gordon Mills
- Oregon Health and Science University Knight Cancer Institute, Portland
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Stanley Hamilton
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Marshall Hicks
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sanjay Gupta
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
23
|
Wang YJ, Chang WC, Wang JY, Wu YH. Ex vivo full-field cellular-resolution optical coherence tomography of basal cell carcinomas: A pilot study of quality and feasibility of images and diagnostic accuracy in subtypes. Skin Res Technol 2019; 26:308-316. [PMID: 31785040 DOI: 10.1111/srt.12801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies have reported the application of conventional optical coherence tomography (OCT) in the diagnosis of basal cell carcinoma (BCC). The new OCT provides cellular details similar to those in pathology slides and may reduce user learning time. This study aimed to demonstrate the quality of ex vivo full-field cellular-resolution OCT images and compare the diagnostic accuracy between physicians with varying pathology experience. MATERIALS AND METHODS Sixty histologically confirmed BCCs were selected. Tissue samples were sectioned and scanned using OCT, and their features were compared with those of hematoxylin and eosin (H&E)-stained sections. Thirty images were selected for the test administered to dermatology residents, dermatopathology fellows, and board-certified general pathologists without any OCT experience. The pretest learning included a 3-min instruction and 10-min self-study of four BCC variants. RESULTS Histopathological BCC and normal histological features were clearly recognizable on the OCT images. The pathological BCC features observed in the OCT images correlated with those found in the H&E-stained sections. Seven participants completed the test. The correct answer rates of the residents, fellows, and pathologists were 71%, 68%, and 83% for BCC and 44%, 57%, and 57% for the BCC subtypes, respectively. CONCLUSION All the participants identified BCC in >70% cases with a learning time of only 13 minutes. The results indicated that cellular-resolution OCT provided high-quality images similar to the conventional pathology slides. Pathology experience did reflect the diagnostic accuracy. However, a longer training time is still needed at all levels to recognize the BCC subtypes correctly.
Collapse
Affiliation(s)
- Yen-Jen Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Chin Chang
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jen-Yu Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hung Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
24
|
Hariri LP, Adams DC, Applegate MB, Miller AJ, Roop BW, Villiger M, Bouma BE, Suter MJ. Distinguishing Tumor from Associated Fibrosis to Increase Diagnostic Biopsy Yield with Polarization-Sensitive Optical Coherence Tomography. Clin Cancer Res 2019; 25:5242-5249. [PMID: 31175092 DOI: 10.1158/1078-0432.ccr-19-0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE With recent advancements in personalized medicine, biopsies must contain sufficient tumor for histologic diagnosis and molecular testing. However, inadvertent biopsy of tumor-associated fibrosis compromises tumor yield, resulting in delayed diagnoses and/or repeat procedures when additional tumor is needed. The ability to differentiate tumor from fibrosis intraprocedurally during biopsy could significantly increase tumor yield. Polarization-sensitive optical coherence tomography (PS-OCT) is an imaging modality that is endoscope- and/or needle-compatible, and provides large volumetric views of tissue microstructure with high resolution (∼10 μm) while simultaneously measuring birefringence of organized tissues such as collagen. We aim to determine whether PS-OCT can accurately detect and distinguish tumor-associated fibrosis from tumor. EXPERIMENTAL DESIGN PS-OCT was obtained ex vivo in 64 lung nodule samples. PS-OCT birefringence was measured and correlated to collagen content in precisely matched histology, quantified on picrosirius red (PSR) staining. RESULTS There was a strong positive correlation between PS-OCT measurement of birefringent fibrosis and total collagen content by PSR (r = 0.793; P < 0.001). In addition, PS-OCT was able to accurately classify tumor regions with >20% fibrosis from those with low fibrosis (≤20%) that would likely yield higher tumor content (P < 0.0001). CONCLUSIONS PS-OCT enables accurate fibrosis detection and can distinguish tumor regions with low fibrosis. PS-OCT has significant potential for clinical impact, as the ability to differentiate tumor from fibrosis could be used to guide intraprocedural tissue sampling in vivo, or for rapid biopsy adequacy assessment ex vivo, to increase diagnostic tumor yield essential for patient care and research.
Collapse
Affiliation(s)
- Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - David C Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Matthew B Applegate
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alyssa J Miller
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Benjamin W Roop
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Melissa J Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|