1
|
Xia H, Yu J, Nie K, Yang J, Zhu L, Zhang S. CT radiomics and human-machine hybrid system for differentiating mediastinal lymphomas from thymic epithelial tumors. Cancer Imaging 2024; 24:163. [PMID: 39609913 PMCID: PMC11603948 DOI: 10.1186/s40644-024-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND It is difficult for radiologists, especially junior radiologists with limited experience to make differential diagnoses between mediastinal lymphomas and thymic epithelial tumors (TETs) due to the overlapping imaging features. The purpose of this study was to develop and validate a CT-based clinico-radiomics model for differentiating lymphomas from TETs and to investigate whether a human-machine hybrid system can assist junior radiologists in improving their diagnostic performance. METHODS The patients who underwent contrast-enhanced chest CT and pathologically confirmed with lymphoma or TET at two centers from January 2011 to December 2019 and from January 2017 to December 2021 were retrospectively included and split as training/validation set and external test set, respectively. Clinical and radiomic signatures were pre-selected by elastic-net, and the models were established with the selected signatures using ensemble learning. Three radiologists independently reviewed CT images and assessed each case of the external test set with knowledge of the relevant clinical information. The diagnoses of reader 1, reader 2, and reader 3 were compared with those of the models in the external test set and further separately input to the model's ensemble process as a human-machine system to make final decisions in the external test set. The improvement of diagnostic performance of radiologists by human-machine system was evaluated by the area under the receiver operating characteristic curve and increase rate. RESULTS A total of 95 patients (51 with lymphomas and 44 with TETs) at Center 1 and 94 (52 with lymphomas and 42 with TETs) at Center 2 were enrolled and divided into training/validation sets and external test set, respectively. The diagnostic performance of the clinico-radiomics model has outperformed the junior radiologists and senior radiologist in AUC (clinico-radiomics model: 0.85 (0.76,0.92); reader 2: 0.70 (0.60,0.80); reader 3: 0.60 (0.49,0.71), reader 1: 0.76 (0.66,0.86), respectively) in the external test set. The human-machine hybrid system demonstrated significant increases in AUC (reader 1 + model: 0.87 (0.79,0.94), an increase of 14%; reader 2 + model: 0.86 (0.77,0.93), an increase of 23%; reader 3 + model: 0.84 (0.76,0.91), an increase of 40%), compared to the human performance alone. CONCLUSIONS The clinico-radiomics model outperformed three radiologists in differentiating lymphomas from TETs on CT. The use of the human-machine hybrid system significantly improved the performance of radiologists, especially junior radiologists. It provides a real-time decision tool to reduce bias and mistakes in radiologist diagnosis and enhances the diagnostic confidence of junior radiologists. This attempt may lead to more human-machine hybrid systems being explored in the diagnosis of different diseases to drive future clinical applications.
Collapse
Affiliation(s)
- Han Xia
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - Jiahui Yu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, No. 241, West Huaihai Rd, Shanghai, 200030, People's Republic of China
| | - Kehui Nie
- Taimei Medical Technology Co., Ltd, Shanghai, 200032, People's Republic of China
| | - Jun Yang
- Taimei Medical Technology Co., Ltd, Shanghai, 200032, People's Republic of China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, No. 241, West Huaihai Rd, Shanghai, 200030, People's Republic of China.
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Zhu L, Pan J, Mou W, Deng L, Zhu Y, Wang Y, Pareek G, Hyams E, Carneiro BA, Hadfield MJ, El-Deiry WS, Yang T, Tan T, Tong T, Ta N, Zhu Y, Gao Y, Lai Y, Cheng L, Chen R, Xue W. Harnessing artificial intelligence for prostate cancer management. Cell Rep Med 2024; 5:101506. [PMID: 38593808 PMCID: PMC11031422 DOI: 10.1016/j.xcrm.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Prostate cancer (PCa) is a common malignancy in males. The pathology review of PCa is crucial for clinical decision-making, but traditional pathology review is labor intensive and subjective to some extent. Digital pathology and whole-slide imaging enable the application of artificial intelligence (AI) in pathology. This review highlights the success of AI in detecting and grading PCa, predicting patient outcomes, and identifying molecular subtypes. We propose that AI-based methods could collaborate with pathologists to reduce workload and assist clinicians in formulating treatment recommendations. We also introduce the general process and challenges in developing AI pathology models for PCa. Importantly, we summarize publicly available datasets and open-source codes to facilitate the utilization of existing data and the comparison of the performance of different models to improve future studies.
Collapse
Affiliation(s)
- Lingxuan Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Changping Laboratory, Beijing, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Weiming Mou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxin Deng
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Gyan Pareek
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Minimally Invasive Urology Institute, Providence, RI, USA
| | - Elias Hyams
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Matthew J Hadfield
- The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School of Brown University, The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tao Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, Address: R. de Luís Gonzaga Gomes, Macao, China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fujian 350108, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Zhu
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yisha Gao
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yancheng Lai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liang Cheng
- Department of Surgery (Urology), Brown University Warren Alpert Medical School, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| | - Rui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
3
|
Busby D, Grauer R, Pandav K, Khosla A, Jain P, Menon M, Haines GK, Cordon-Cardo C, Gorin MA, Tewari AK. Applications of artificial intelligence in prostate cancer histopathology. Urol Oncol 2024; 42:37-47. [PMID: 36639335 DOI: 10.1016/j.urolonc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023]
Abstract
The diagnosis of prostate cancer (PCa) depends on the evaluation of core needle biopsies by trained pathologists. Artificial intelligence (AI) derived models have been created to address the challenges posed by pathologists' increasing workload, workforce shortages, and variability in histopathology assessment. These models with histopathological parameters integrated into sophisticated neural networks demonstrate remarkable ability to identify, grade, and predict outcomes for PCa. Though the fully autonomous diagnosis of PCa remains elusive, recently published data suggests that AI has begun to serve as an initial screening tool, an assistant in the form of a real-time interactive interface during histological analysis, and as a second read system to detect false negative diagnoses. Our article aims to describe recent advances and future opportunities for AI in PCa histopathology.
Collapse
Affiliation(s)
- Dallin Busby
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ralph Grauer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Krunal Pandav
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Akshita Khosla
- Department of Internal Medicine, Crozer Chester Medical Center, Philadelphia, PA
| | | | - Mani Menon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - G Kenneth Haines
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael A Gorin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
4
|
Luchini C, Pantanowitz L, Adsay V, Asa SL, Antonini P, Girolami I, Veronese N, Nottegar A, Cingarlini S, Landoni L, Brosens LA, Verschuur AV, Mattiolo P, Pea A, Mafficini A, Milella M, Niazi MK, Gurcan MN, Eccher A, Cree IA, Scarpa A. Ki-67 assessment of pancreatic neuroendocrine neoplasms: Systematic review and meta-analysis of manual vs. digital pathology scoring. Mod Pathol 2022; 35:712-720. [PMID: 35249100 PMCID: PMC9174054 DOI: 10.1038/s41379-022-01055-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Ki-67 assessment is a key step in the diagnosis of neuroendocrine neoplasms (NENs) from all anatomic locations. Several challenges exist related to quantifying the Ki-67 proliferation index due to lack of method standardization and inter-reader variability. The application of digital pathology coupled with machine learning has been shown to be highly accurate and reproducible for the evaluation of Ki-67 in NENs. We systematically reviewed all published studies on the subject of Ki-67 assessment in pancreatic NENs (PanNENs) employing digital image analysis (DIA). The most common advantages of DIA were improvement in the standardization and reliability of Ki-67 evaluation, as well as its speed and practicality, compared to the current gold standard approach of manual counts from captured images, which is cumbersome and time consuming. The main limitations were attributed to higher costs, lack of widespread availability (as of yet), operator qualification and training issues (if it is not done by pathologists), and most importantly, the drawback of image algorithms counting contaminating non-neoplastic cells and other signals like hemosiderin. However, solutions are rapidly developing for all of these challenging issues. A comparative meta-analysis for DIA versus manual counting shows very high concordance (global coefficient of concordance: 0.94, 95% CI: 0.83-0.98) between these two modalities. These findings support the widespread adoption of validated DIA methods for Ki-67 assessment in PanNENs, provided that measures are in place to ensure counting of only tumor cells either by software modifications or education of non-pathologist operators, as well as selection of standard regions of interest for analysis. NENs, being cellular and monotonous neoplasms, are naturally more amenable to Ki-67 assessment. However, lessons of this review may be applicable to other neoplasms where proliferation activity has become an integral part of theranostic evaluation including breast, brain, and hematolymphoid neoplasms.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.
- ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy.
| | - Liron Pantanowitz
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, MI, USA
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sylvia L Asa
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Pietro Antonini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Ilaria Girolami
- Division of Pathology, San Maurizio Central Hospital, Bolzano, Italy
| | - Nicola Veronese
- Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | - Alessia Nottegar
- Pathology Unit, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Sara Cingarlini
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna V Verschuur
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Antonio Pea
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Muhammad K Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Metin N Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Albino Eccher
- Pathology Unit, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
| | - Ian A Cree
- International Agency for Research on Cancer, IARC, Lyon, France
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.
- ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|