1
|
Asejeje FO, Alade TF, Oyibo A, Abolaji AO. Toxicological assessment of sodium benzoate in Drosophila melanogaster. J Biochem Mol Toxicol 2024; 38:e23586. [PMID: 37986221 DOI: 10.1002/jbt.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Sodium benzoate (SB), the sodium salt of benzoic acid, is a food preservative with wide applications in the food, cosmetic and pharmaceutical industries due to its ability to kill many microorganisms effectively. Experimental evidence however suggests that excessive intake of SB poses detrimental health risks among consumers in the population. The present study investigated the toxic effects of various concentrations of SB using Drosophila melanogaster as a model. Adult wild-type flies of Canton S strain (1- to 3-days old) was orally exposed to SB (0, 0.5, 1.0, 2.0 and 5.0 mg/5 g diet) to evaluate survival rates for 21 days. Thereafter, we evaluated markers of oxidative stress, antioxidant status and behavioral activity in D. melanogaster exposed to SB for seven (7) days. We observed that SB (2.0 and 5.0 mg/5 g diet) decreased the survival of D. melanogaster. Also, SB inhibited glutathione-S-transferase activity and depleted total thiols and nonprotein thiols contents. Moreover, SB (5 mg/5 g diet) increased nitric oxide (nitrite/nitrate) level and reduced flies' emergence rate. Conclusively, findings from this study revealed that exposure to high concentrations of SB reduced survival rate and induced toxicity via the induction of oxidative stress and inhibition of antioxidant enzymes in D. melanogaster.
Collapse
Affiliation(s)
- Folake O Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University Oyo, Oyo State, Nigeria
| | - Timilehin F Alade
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University Oyo, Oyo State, Nigeria
| | - Aghogho Oyibo
- Department of Biochemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Ogun State, Nigeria
| | - Amos O Abolaji
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Bhardwaj SK, Deep A, Bhardwaj N, Wangoo N. Recent advancements in nanomaterial based optical detection of food additives: a review. Analyst 2023; 148:5322-5339. [PMID: 37750046 DOI: 10.1039/d3an01317k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Food additives have become a critical component in the food industry. They are employed as preservatives to decelerate the negative effects of environmental and microbial factors on food quality. Currently, food additives are used for a variety of purposes, including colorants, flavor enhancers, nutritional supplements, etc., owing to improvements in the food industry. Since the usage of food additives has increased dramatically, the efficient monitoring of their acceptable levels in food products is quite necessary to mitigate the problems associated with their inappropriate use. The traditional methods used for detecting food additives are generally based on standard spectroscopic and chromatographic techniques. However, these analytical techniques are limited by their high instrumentation cost and time-consuming procedures. The emerging field of nanotechnology has enabled the development of highly sensitive and specific sensors to analyze food additives in a rapid manner. The current article emphasizes the need to detect various food additives owing to their potential negative effects on humans, animals, and the environment. In this article, the role of nanomaterials in the optical sensing of food additives has been discussed owing to their high accuracy, ease-of-use, and excellent sensitivity. The applications of nanosensors for the detection of various food additives have been elaborated with examples. The current article will assist policymakers in developing new rules and regulations to mitigate the adverse effects of toxic food additives on humans and the environment. In addition, the prospects of nanosensors for the optical detection of food additives at a commercial scale have been discussed to combat their irrational use in the food industry.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Applied Sciences, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| | - Akash Deep
- Energy and Environment unit, Institute of Nanoscience and Technology, Mohali, India.
| | - Neha Bhardwaj
- Energy and Environment unit, Institute of Nanoscience and Technology, Mohali, India.
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Asejeje FO, Akinola KD, Abiola MA. Sodium benzoate exacerbates hepatic oxidative stress and inflammation in lipopolysaccharide-induced liver injury in rats. Immunopharmacol Immunotoxicol 2023; 45:558-564. [PMID: 36927185 DOI: 10.1080/08923973.2023.2191818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver damage is a global health concern associated with a high mortality rate. Sodium benzoate (SB) is a widely used preservative in the food industry with a wide range of applications. However, there's a lack of scientific reports on its effect on lipopolysaccharide-induced hepatic dysfunction. OBJECTIVE The present study investigated the influence of SB on lipopolysaccharide (LPS)-induced liver injury. MATERIALS AND METHODS Twenty-eight rats were randomly allocated into four groups: control (received distilled water), SB (received 600 mg/kg), LPS (received 0.25 mg/kg), and LPS + SB (received LPS, 0.25 mg/kg, and SB, 600 mg/kg). SB was administered orally for 14 days while LPS was administered intraperitoneally for 7 days. RESULTS Administration of SB to rats with hepatocyte injury exacerbated liver damage with a significant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). We also observed that SB aggravated LPS-mediated hepatic oxidative stress occasioned by a marked decrease in antioxidant status with a concomitant increase in lipid peroxidation. Furthermore, LPS - mediated increase in inflammatory biomarkers as well as histological deterioration in the liver was exacerbated following the administration of SB to rats. CONCLUSION Taken together, the study provides experimental evidence that SB exacerbates hepatic oxidative stress and inflammation in LPS-mediated liver injury.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Khalid Damilare Akinola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Thomas OE, Adefolarin A, Ana G, Odaibo G. Determinants of knowledge associated with occupational hazards and perceived health problems among dye workers in Abeokuta, Nigeria. J Public Health Afr 2023; 14:1985. [PMID: 37528951 PMCID: PMC10389106 DOI: 10.4081/jphia.2023.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/25/2022] [Indexed: 08/03/2023] Open
Abstract
Background Identification of potential hazards, their adverse health effects, and predisposing factors in the workplace are critical to improving safety. The objective of the study was to assess the knowledge of occupational hazards, the prevalence of perceived health problems and their predictors among textile dye workers in Abeokuta Nigeria who work in unsupervised settings. Materials and Methods In this cross-sectional study, data were collected from 199 participants using a validated semi-structured interviewer-administered questionnaire. Multiple linear regression analysis was used to determine the predictors of knowledge while Pearson Chi-square was employed to test the association between perceived health problems, sociodemographics and work environment characteristics. Results The mean age of the respondents was 40 (SD=12) years with an average work experience of 19 years. The majority of respondents 139 (69.8%) had lower than average scores on knowledge of 25 questions on chemical hazards. There was no correlation between knowledge score and work experience (P=0.492) or age (P=0.462) but the knowledge was significantly associated with exposure score (P=0.004), gender (P=0.002) and adherence to instructions on chemicals usage (P=0.041) after adjusting for safe practice. The most frequent health problems among the dye workers were respiratory disorders (53.8%), allergies (51.8%), and skin disorders (24.1%). Airborne gaseous pollutants from the mixing of chemicals were associated with allergies (P=0.045), circulatory (P=0.02) and skin disorders (P=0.049) while air-borne textile fiber/dye particles could predict allergies (P=0.028). Conclusions Findings revealed that exposure, gender and adherence to instruction labels on dye/chemical containers could determine knowledge of chemical hazards while physical work environment characteristics could determine health problems.
Collapse
Affiliation(s)
| | | | - Godson Ana
- Department of Environmental Health Science, Faculty of Public Health
| | - Georgina Odaibo
- Department of Virology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| |
Collapse
|
5
|
Li X, Zang M, Li D, Zhang K, Zhang Z, Wang S. Meat food fraud risk in Chinese markets 2012-2021. NPJ Sci Food 2023; 7:12. [PMID: 37012259 PMCID: PMC10070328 DOI: 10.1038/s41538-023-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Food fraud is a major concern worldwide, and the majority of cases include meat adulteration or fraud. Many incidences of food fraud have been identified for meat products both in China and abroad over the last decade. We created a meat food fraud risk database compiled from 1987 pieces of information recorded by official circular information and media reports in China from 2012 to 2021. The data covered livestock, poultry, by-products, and various processed meat products. We conducted a summary analysis of meat food fraud incidents by researching fraud types, regional distribution, adulterants and categories involved, categories and sub-categories of foods, risk links and locations, etc. The findings can be used not only to analyze meat food safety situations and study the burden of food fraud but also help to promote the efficiency of detection and rapid screening, along with improving prevention and regulation of adulteration in the meat supply chain markets.
Collapse
Affiliation(s)
- Xiaoman Li
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Mingwu Zang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China.
| | - Dan Li
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Kaihua Zhang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Zheqi Zhang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Shouwei Wang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068, Beijing, China
| |
Collapse
|
6
|
Sultana S, Rahman MM, Aovi FI, Jahan FI, Hossain MS, Brishti SA, Yamin M, Ahmed M, Rauf A, Sharma R. Food Color Additives in Hazardous Consequences of Human Health: An Overview. Curr Top Med Chem 2023; 23:1380-1393. [PMID: 36650651 DOI: 10.2174/1568026623666230117122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.
Collapse
Affiliation(s)
- Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sakhawat Hossain
- Pharmaceutical Sciences Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Md Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhu W, Li W, Li Z, Lu Y, Fan J, Xiong H, Peng H. Surface imprinted magnetic carbon nanofibrous microspheres with hierarchical porosity for the highly efficient and selective extraction of Brilliant Blue from food samples. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Thomas OE, Adegoke OA. Synthesis, characterization and solvatochromic behaviour of new water-soluble 8-hydroxy-3,6-disulphonaphthyl azohydroxynaphthalenes. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Olusegun E. Thomas
- Department of Pharmaceutical Chemistry, University of Ibadan, Ibadan, Nigeria
| | - Olajire A. Adegoke
- Department of Pharmaceutical Chemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Khezerlou A, Akhlaghi AP, Alizadeh AM, Dehghan P, Maleki P. Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. Toxicol Rep 2022; 9:1066-1075. [PMID: 36561954 PMCID: PMC9764193 DOI: 10.1016/j.toxrep.2022.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tert-butyl hydroquinone (TBHQ) is a food additive commonly used as a more effective protectant in the food, cosmetic and pharmaceutical industries. However, the long-term exposure to TBHQ at higher doses (0.7 mg/kg) results in substantial danger to public health and brings a series of side effects, including cytotoxic, genotoxic, carcinogenic, and mutagenic effects. As a result, the global burden of chronic diseases has fascinated consumers and governments regarding the safety assessment of food additives. Regarding contradictory reports of various research about the application of food additives, the accurate monitoring of food additives is urgent. Notwithstanding, there are reports of the therapeutic effects of TBHQ under pathologic conditions through activation of nuclear factor erythroid 2-related factor 2. Thus, further investigations are required to investigate the impact of TBHQ on public health and evaluate its mechanism of action on various organs and cells. Therefore, this review aimed to investigate TBHQ safety through an overview of its impacts on different tissues, cells, and biological macromolecules as well as its therapeutic effects under pathologic conditions.
Collapse
Affiliation(s)
- Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir pouya Akhlaghi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Ravichandran G, Lakshmanan DK, Arunachalam A, Thilagar S. Food obesogens as emerging metabolic disruptors; A toxicological insight. J Steroid Biochem Mol Biol 2022; 217:106042. [PMID: 34890825 DOI: 10.1016/j.jsbmb.2021.106042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/13/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022]
Abstract
Human food is composed of loads of chemicals derived naturally as well as unintentionally through environmental sources. Food additives added purposefully, play an important role in the palatability of foods. Most additives are synthetic whose essentiality in food processing is well-known however their health risks are not overlooked. The palatability of food should not only stimulate our eating desire alone but, also assure sufficient quality and safety. Application of food additives varies from region to region due to cultural or ethnic differences and the local food availability. There are about more than ten thousand chemicals allowed in food whereas due to weak enforcement, it becomes onerous for regulatory bodies identifying chemicals that are inadequately or not tested at all for safety. The hiking population and urbanization in many industrialized and developing countries resulted in life-style changes including culinary and eating choices. Particularly, the modern way of this globalised life demands ready-to-cook or ready-made foods, snacks, sweets, soft drinks, desserts, confectionery and so on. These sorts of food would be most uninteresting unless processed with additives. This puts food industries under demand to robustly supply foods that are either partially, fully or ultra-processed using plenty of additives. Recent research warns consuming food additives may result in serious health risks, not only for children but also for adults. Growing body of studies on food additives in various experimental animals, cell cultures, and human population suggest elevation of number of obesity and diabetes risk factors i.e. adiposity, dyslipidemia, weight gain, hyperglycaemia, insulin resistance, glucose intolerance, energy imbalance, hormonal intervention etc. Hence, it is important to identify and explore food obesogens or obesogenic food additives posing potential impact. Based on the recent toxicological findings, the review aspires to establish the association between exposure of food obesogen and metabolic disruption which may help filling knowledge gaps and distributing more knowledge, awareness and effective measures to implement treatment and preventive strategies for metabolic syndrome.
Collapse
Affiliation(s)
- Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India
| | - Abirami Arunachalam
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
11
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Azuma S, Quartey NA, Ofosu I. Sodium benzoate in non-alcoholic carbonated (soft) drinks: Exposure and health risks. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Motta CM, Simoniello P, Arena C, Capriello T, Panzuto R, Vitale E, Agnisola C, Tizzano M, Avallone B, Ferrandino I. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1126-1135. [PMID: 31434190 DOI: 10.1016/j.envpol.2019.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Food dyes, or color additives, are chemicals added to industrial food products and in domestic cooking to improve the perceived flavor and attractiveness. Of natural and synthetic origin, their safety has been long discussed, and concern for human safety is now clearly manifested by warnings added on products labels. Limited attention, however, has been dedicated to the effects of these compounds on aquatic flora and fauna. For this reason, the toxicity of four different commercially available food dyes (cochineal red E120, Ponceau red E124, tartrazine yellow E102 and blue Patent E131) was assessed on three different model organisms, namely Cucumis sativus, Artemia salina and Danio rerio that occupy diverse positions in the trophic pyramid. The evidence collected indicates that food dyes may target several organs and functions, depending on the species. C. sativus rate of germination was increased by E102, while root/shoot ratio was ∼20% reduced by E102, E120 and E124, seed total chlorophylls and carotenoids were 15-20% increased by E120 and 131, and total antioxidant activity was ∼25% reduced by all dyes. Mortality and low mobility of A. salina nauplii were increased by up to 50% in presence of E124, E102 and E131, while the nauplii phototactic response was significantly altered by E102, E120 and E124. Two to four-fold increases in the hatching percentages at 48 h were induced by E124, E102 and E131 on D. rerio, associated with the occurrence of 20% of embryos showing developmental defects. These results demonstrated that the food dyes examined are far from being safe for the aquatic organisms as well as land organisms exposed during watering with contaminated water. The overall information obtained gives a realistic snapshot of the potential pollution risk exerted by food dyes and of the different organism' ability to overcome the stress induced by contamination.
Collapse
Affiliation(s)
| | - Palma Simoniello
- Department of Sciences and Technologies, University of Naples Parthenope, Naples, Italy.
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Monica Tizzano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
14
|
Sierra‐Rosales P, Toledo‐Neira C, Ortúzar‐Salazar P, Squella JA. MWCNT‐modified Electrode for Voltammetric Determination of Allura Red and Brilliant Blue FCF in Isotonic Sport Drinks. ELECTROANAL 2019. [DOI: 10.1002/elan.201800786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paulina Sierra‐Rosales
- Programa Institucional de Fomento a la InvestigaciónDesarrollo e InnovaciónUniversidad Tecnológica Metropolitana Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín Santiago Chile
| | - Carla Toledo‐Neira
- Departamento de Química de los MaterialesFacultad de Química y BiologíaUniversidad de Santiago de Chile Av. Bernardo O'Higgins 3363 917002, Estación Central Santiago Chile
| | - Pía Ortúzar‐Salazar
- Departamento de Química Orgánica y FisicoquímicaFacultad de Ciencias Químicas y FarmacéuticasUniversidad de Chile 8380492, Independencia Santiago Chile
| | - Juan Arturo Squella
- Departamento de Química Orgánica y FisicoquímicaFacultad de Ciencias Químicas y FarmacéuticasUniversidad de Chile 8380492, Independencia Santiago Chile
| |
Collapse
|
15
|
Arabzadeh N, Akbarzadeh R, Mohammadi A, Darwish M. Green synthesis and application of nanomagnetic molecularly imprinted polymerfor fast solid-phase extraction of brilliant blue FCF from real samples. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1665-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Martynov VO, Brygadyrenko VV. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. REGULATORY MECHANISMS IN BIOSYSTEMS 2018. [DOI: 10.15421/021871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Substances for protecting plants often contain colourings, the impact of which on invertebrates has been studied insufficiently. The addition of food colourings in different concentrations to the diet of saprophage beetles can affect their metabolism, causing loss of body weight. In the experiment, we determined the impact of tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor Linnaeus, 1758 larvae. The substances were added to their fodder at five concentrations (1, 0.1, 0.01, 0.001 and 0.0001 g/kg of dry fodder) during a 21-day experiment. Statistically significant data on changes in the body weight of T. molitor larvae were received after adding 1 g/kg concentration of indigo carmine and 0.1 and 1 g/kg concentrations of tartrazine. In the other variants of the experiment, no statistically significant differences were determined. Tartrazine, allura red and indigo carmine cause decrease in the body weight of T. molitor larvae, depending on the concentration of the colouring. The toxic effect of synthetic food colourings on living organisms and the low number of studies devoted to such impact on insects indicate the relevance and necessity for further research in this sphere.
Collapse
|
17
|
Simultaneous Determination of Sunset Yellow FCF, Allura Red AC, Quinoline Yellow WS, and Tartrazine in Food Samples by RP-HPLC. J CHEM-NY 2018. [DOI: 10.1155/2018/6486250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An efficient method was developed for the simultaneous determination of Sunset Yellow FCF (E110), Allura Red AC (E129), Quinoline Yellow WS (E104), and Tartrazine (E102) in food samples by RP-HPLC. The mentioned food dyes were analyzed at room temperature for 23 min with gradient elution. Three mobile phases were used for the elution, and mobile phase A was an acetate buffer (pH = 7.5, 1%), mobile phase B was acetonitrile, and mobile phase C was methanol. The flow rate was 1.0 mL min−1, and the injection volume was 20 µL. The linear ranges were 0.72–50 mg L−1, 0.24–50 mg L−1, 0.75–10 mg L−1, and 0.69–50 mg L−1for Tartrazine, Quinoline Yellow WS, Sunset Yellow FCF, and Allura Red AC, respectively.R2values were 0.999 for all dyes. Limits of detection were 0.24 mg L−1, 0.08 mg L−1, 0.25 mg L−1, and 0.23 mg L−1for Tartrazine, Quinoline Yellow WS, Sunset Yellow FCF, and Allura Red AC, respectively. The relative standard deviation (RSD) of the measurements for all of the four dyes was between 0.56 and 1.65% intraday measurements. This method was successfully applied in the determination of the mentioned dyes in ice pops, gummy bears, chewing gum, and sweets candy samples.
Collapse
|
18
|
Jiang L, Gan CRR, Gao J, Loh XJ. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3609-3644. [PMID: 27276371 DOI: 10.1002/smll.201600327] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full-fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Ching Ruey Raymond Gan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Jian Gao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Republic of Singapore
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Republic of Singapore
| |
Collapse
|