1
|
Andary J, El Ballouz H, Abou-Khalil R. Lebanese Medicinal Plants with Ophthalmic Properties. Pharmaceuticals (Basel) 2025; 18:155. [PMID: 40005969 PMCID: PMC11858532 DOI: 10.3390/ph18020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Lebanon benefits from a rich biodiversity, with medicinal and aromatic plants (MAPs) representing an important part of the country's natural wealth; however, limited data are available documenting medicinal plants being employed in eye health. This review is the first to document Lebanese medicinal plants with ophthalmic characteristics and phytochemistry that might be beneficial in the development of new, accessible, and efficient ocular medications. In this study, we searched for studies on ocular therapeutic plants using known resources, including PubMed, ScienceDirect, and Google Scholar, and confirmed these plants' presence within the Lebanese flora. The efficacy of 52 species from 28 families, including two endemic species (Crepis libanotica and Salvia libanotica), has been documented. Their Latin names, regional names, ocular medical applications, the plant parts used, and preparation forms are detailed below. The largest number of species belongs to the Lamiaceae family (21%), followed by Asteraceae (14%) and Solanaceae (7%). The most commonly used plant parts are the stems, leaves, and seeds. Ocular treatments fall into several categories: inflammation, infection, irritation, dry-eye, eyewash, the prevention or delay of cataracts, and general eye problems. A significant percentage (68%) of the medicinal plants target the anterior part of the eye. Some of the reported plants can be harmful to the eyes and should be handled with caution. The Lebanese medicinal plants listed, constituting a local heritage with global importance, could be used for treating ophthalmic ailments and require special screening and preservation.
Collapse
Affiliation(s)
- Jeanne Andary
- Faculty of Health Sciences, Modern University for Business and Science, Beirut P.O. Box 113-7501, Lebanon
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Haitham El Ballouz
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Rony Abou-Khalil
- Biology Department, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| |
Collapse
|
2
|
Akkewar AS, Mishra KA, Kamble MG, Kumar S, Dey J, Sethi KK. A mechanistic review on growing multiple therapeutic applications of lutein and its global market research. Phytother Res 2024; 38:3190-3217. [PMID: 38634408 DOI: 10.1002/ptr.8197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Lutein is a naturally occurring carotenoid synthesized by plants and algae that has a beneficial effect on several biological processes and associated ailments. Its immediate application is in ophthalmology, where it significantly lowers the incidences of age-related macular degeneration (AMD). It also has anti-inflammatory action, treatment of diabetic retinopathy, and cataracts, and enhancement of visual contrast. To critically assess lutein biosynthesis, therapeutic applicability, and market research literature. We have discussed its theoretical frameworks, experimental evidence, limitations, as well as clinical trial results, and future research prospects. The literature for this review article was mined and compiled by collecting and analyzing articles from several databases, including ScienceDirect, Google Scholar, PubMed, Wiley Online Library, Patentscope, and ClinicalTrials.gov published until March 30, 2022. Patent publications were identified using the search terms like IC:(C07C67/56) AND EN_AB:(lutein) OR EN_TI:(lutein) OR EN_AB:(extraction) OR EN_TI:(process). According to the literature, lutein is an essential nutrient given that it cannot be synthesized in the human body and acts as an antioxidant, affecting AMD, diabetic retinopathy, Rheumatic diseases, inflammation, and cancer. Due to inadequate production and laborious extraction, lutein is expensive despite its high demand and applicability. Market research predicts a 6.3% compound annual growth rate for lutein by 2032. Optimizing lutein extraction for high yield and purity is necessary. Lutein has proven applicability in various ailments as well as cosmetics that can be developed as a candidate drug for various diseases discussed in the review.
Collapse
Affiliation(s)
- Ashish Sunil Akkewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Mahesh Gopichand Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Sanjay Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Juhi Dey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| | - Kalyan Kumar Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, India
| |
Collapse
|
3
|
Lv Y, Zhai C, Sun G, He Y. Chitosan as a promising materials for the construction of nanocarriers for diabetic retinopathy: an updated review. J Biol Eng 2024; 18:18. [PMID: 38388386 PMCID: PMC10885467 DOI: 10.1186/s13036-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetic retinopathy (DR) is a condition that causes swelling of the blood vessels of the retina and leaks blood and fluids. It is the most severe form of diabetic eye disease. It causes vision loss in its advanced stage. Diabetic retinopathy is responsible for causing 26% of blindness. Very insufficient therapies are accessible for the treatment of DR. As compared to the conventional therapies, there should be enhanced research on the controlled release, shorter duration, and cost-effective therapy of diabetic retinopathy. The expansion of advanced nanocarriers-based drug delivery systems has been now employed to exploit as well as regulate the transport of many therapeutic agents to target sites via the increase in penetration or the extension of the duration of contact employing production by enclosing as well as distributing tiny molecules in nanostructured formulation. Various polymers have been utilized for the manufacturing of these nanostructured formulations. Chitosan possesses incredible biological and chemical properties, that have led to its extensive use in pharmaceutical and biomedical applications. Chitosan has been used in many studies because of its enhanced mucoadhesiveness and non-toxicity. Multiple studies have used chitosan as the best candidate for manufacturing nanocarriers and treating diabetic retinopathy. Numerous nanocarriers have been formulated by using chitosan such as nanostructured lipid carriers, solid lipid nanoparticles, liposomes, and dendrimers for treating diabetic retinopathy. This current review elaborates on the recent advancements of chitosan as a promising approach for the manufacturing of nanocarriers that can be used for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Yan Lv
- Department of Ophthalmology, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Chenglei Zhai
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, 130011, China
| | - Gang Sun
- Department of General Surgery, Jilin Province FAW General Hospital, Changchun, 130011, China.
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
4
|
Ortega JT, Jastrzebska B. Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:61-77. [PMID: 34962636 DOI: 10.1007/5584_2021_682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary degenerative diseases affecting 1 of 4000 people worldwide and being the most prevalent cause of visual handicap among working populations in developed countries. These disorders are mainly related to the abnormalities in the rod G protein-coupled receptor (GPCR), rhodopsin reflected in the dysregulated membrane trafficking, stability and phototransduction processes that lead to progressive loss of retina function and eventually blindness. Currently, there is no cure for RP, and the therapeutic options are limited. Targeting rhodopsin with small molecule chaperones to improve the folding and stability of the mutant receptor is one of the most promising pharmacological approaches to alleviate the pathology of RP. This review provides an update on the current knowledge regarding small molecule compounds that have been evaluated as rhodopsin modulators to be considered as leads for the development of novel therapies for RP.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Fighting eye diseases with Brazilian Green Propolis. Biomed Pharmacother 2021; 140:111740. [PMID: 34029953 DOI: 10.1016/j.biopha.2021.111740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
|
6
|
The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. Int J Mol Sci 2019; 20:ijms20246218. [PMID: 31835521 PMCID: PMC6941084 DOI: 10.3390/ijms20246218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.
Collapse
|
7
|
Ortega JT, Parmar T, Jastrzebska B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J Biol Chem 2019; 294:8101-8122. [PMID: 30944172 DOI: 10.1074/jbc.ra119.007808] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin (Rho) is a visual G protein-coupled receptor expressed in the rod photoreceptors of the eye, where it mediates transmission of a light signal into a cell and converts this signal into a nerve impulse. More than 100 mutations in Rho are linked to various ocular impairments, including retinitis pigmentosa (RP). Accordingly, much effort has been directed toward developing ligands that target Rho and improve its folding and stability. Natural compounds may provide another viable approach to such drug discovery efforts. The dietary polyphenol compounds, ubiquitously present in fruits and vegetables, have beneficial effects in several eye diseases. However, the underlying mechanism of their activity is not fully understood. In this study, we used a combination of computational methods, biochemical and biophysical approaches, including bioluminescence resonance energy transfer, and mammalian cell expression systems to clarify the effects of four common bioactive flavonoids (quercetin, myricetin, and their mono-glycosylated forms quercetin-3-rhamnoside and myricetrin) on rod opsin stability, function, and membrane organization. We observed that by directly interacting with ligand-free opsin, flavonoids modulate its conformation, thereby causing faster entry of the retinal chromophore into its binding pocket. Moreover, flavonoids significantly increased opsin stability, most likely by introducing structural rigidity and promoting receptor self-association within the biological membranes. Of note, the binding of flavonoids to an RP-linked P23H opsin variant partially restored its normal cellular trafficking. Together, our results suggest that flavonoids could be utilized as lead compounds in the development of effective nonretinoid therapeutics for managing RP-related retinopathies.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|