1
|
Kim TH, Heo SY, Oh GW, Park WS, Jung WK. Biocompatibility and sub-chronic toxicity studies of phlorotannin/polycaprolactone coated trachea tube for advancing medical device applications. Sci Rep 2024; 14:3945. [PMID: 38365854 PMCID: PMC10873353 DOI: 10.1038/s41598-024-54684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
The phlorotannin-polycaprolactone-coated endotracheal tube (PP tube) has been developed with the aim of preventing tracheal stenosis that can result from endotracheal intubation, a factor that can lead to a serious airway obstruction. Its preventive efficacy has been assessed through both in vitro and in vivo investigations. However, there is a lack of studies concerning its biocompatibility and sub-chronic toxicity in animal models, a crucial factor to ensure the safety of its usage as a functional endotracheal tube. Thus, this study aimed to evaluate the biocompatibility and sub-chronic (13 weeks) toxicity of the PP tube through L929 cell line and diverse in vivo models. The cytotoxicity testing was performed using the extracts of PP tube on L929 cells for 72 h. Furthermore, other tests conducted on animal models, including ICR mice (acute systemic toxicity), New Zealand white rabbit (intradermal reactivity and pyrogen tests), guinea pig (maximization sensitization), and Sprague Dawley rats (sub-chronic toxicity). In both biocompatibility and sub-chronic toxicity analyses, no significant adverse effects are observed in the groups exposed to the PP tube, when compared to control group. Altogether, the findings suggested that the PP tube exhibits relative non-toxic and safety, supporting its suitability for clinical usage. However, extended periods of intubation may produce mild irritant responses, highlighting the clinical caution of limiting intubation duration to less than 13 weeks.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Su R, Su W, Cai J, Cen L, Huang S, Wang Y, Li P. Photodynamic antibacterial application of TiO 2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. Int J Biol Macromol 2024; 254:127716. [PMID: 37924903 DOI: 10.1016/j.ijbiomac.2023.127716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Although photodynamic therapy (PDT) has great advantages for the treatment of bacterial infections, photosensitizers (PSs) often have many disadvantages that limit their application. Improving the shortcomings of PSs and developing efficient PDT antimicrobial materials remain serious challenges. In this study, a nanocomposite drug (TiO2/curcumin/hydroxypropyl-cyclodextrin, TiO2/Cur/HPCD) was constructed and combined with konjac glucomannan to form composite films (TiO2/Cur/HPCD films, KTCHD films). The stabilities of TiO2 and Cur were improved in the presence of HPCD. The particle size of TiO2/Cur/HPCD was approximately 33.9 nm, and the addition of TiO2/Cur/HPCD enhanced the mechanical properties of the films. Furthermore, TiO2/Cur/HPCD and KTCHD films exhibited good biocompatibility and PDT antibacterial effects. The antibacterial rate of TiO2/Cur/HPCD was 74.46 % against MRSA at 500 μg/mL and 99.998 % against E. coli at 400 μg/mL, while it was adsorbed on the surface of bacteria to improve the effectiveness of the treatment. In addition, studies in mice confirmed that TiO2/Cur/HPCD and KTCHD films can treat bacterial infections and promote wound healing, with a highest wound healing rate of 84.6 % in the KTCHD-10 films + Light group on day 12. Overall, TiO2/Cur/HPCD is a promising nano-antibacterial agent and KTCHD films have the potential to be employed as antibacterial and environment-friendly trauma dressings.
Collapse
Affiliation(s)
- Rixiang Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China; Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | | | - Yu Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
3
|
Marcut L, Manescu Paltanea V, Antoniac A, Paltanea G, Robu A, Mohan AG, Grosu E, Corneschi I, Bodog AD. Antimicrobial Solutions for Endotracheal Tubes in Prevention of Ventilator-Associated Pneumonia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5034. [PMID: 37512308 PMCID: PMC10386556 DOI: 10.3390/ma16145034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Ventilator-associated pneumonia is one of the most frequently encountered hospital infections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for ventilator-associated pneumonia because its surface can be colonized by different types of pathogens, which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings, and combinatorial methods, with examples from the literature. We end our analysis by identifying the gaps existing in the present research and investigating future possibilities that can decrease ventilator-associated pneumonia cases and improve patient comfort during treatment.
Collapse
Affiliation(s)
- Lavinia Marcut
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Intensive Care Unit, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Veronica Manescu Paltanea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Iuliana Corneschi
- Romfire Protect Solutions SRL, 39 Drumul Taberei, RO-061359 Bucharest, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
4
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Visible-light-driven photocatalytic inactivation of Escherichia coli by titanium dioxide anchored on natural pyrite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Electrospun alginate mats embedding silver nanoparticles with bioactive properties. Int J Biol Macromol 2022; 213:427-434. [PMID: 35661668 DOI: 10.1016/j.ijbiomac.2022.05.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 01/01/2023]
Abstract
Polysaccharide-based composites embedding silver nanoparticles (AgNPs) represent a promising alternative to common antimicrobial materials because of the effective, broad-spectrum biocidal properties of AgNPs combined with the biocompatibility and environmental safety of the naturally occurring polymeric component. In this work, AgNPs stabilized with alginate chains (Alg@AgNPs) were successfully synthesized in situ within the polysaccharide solution through a wet chemical approach carried out at different concentrations of the silver salt precursor. Once obtained, the aqueous suspensions were electrospun to prepare non-woven membranes, showing a homogeneous nanostructured texture (with fiber diameter between 100 and 150 nm), which was found to be influenced by the size (between 20 and 35 nm) of the embedded metal nanoparticles. The biocidal potential of the nanocomposite mats was preliminarily tested against Gram-negative E. coli. The results showed that the antimicrobial response of the investigated samples occurred within a day of incubation and can be observed for AgNPs content in the polysaccharide fibers far below the nanomolar regime.
Collapse
|
7
|
Chen X, Ling X, Liu G, Xiao J. Antimicrobial Coating: Tracheal Tube Application. Int J Nanomedicine 2022; 17:1483-1494. [PMID: 35378882 PMCID: PMC8976493 DOI: 10.2147/ijn.s353071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common and serious nosocomial infection in mechanically ventilated patients, increasing mortality, prolonging the patient length of stay, and increasing costs. In recent years, extensive studies on ventilator-associated pneumonia have shown that tracheal intubation plays an essential role in the pathogenesis of VAP, with the primary mechanism being the rapid colonization of the tracheal intubation surface by microbiota. Antibiotics do not combat microbial airway colonization, and antimicrobial coating materials offer new ideas to solve this problem. This paper reviews the current research progress on the role of endotracheal tube (ET) biofilms in the pathogenesis of VAP and antimicrobial coating materials.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaomei Ling
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Gaowang Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinfang Xiao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Jinfang Xiao, Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, People’s Republic of China, Tel +86 198 6518 2069, Email
| |
Collapse
|
8
|
Koskinen K, Penttinen R, Örmälä-Odegrip AM, Giske CG, Ketola T, Jalasvuori M. Systematic Comparison of Epidemic and Non-Epidemic Carbapenem Resistant Klebsiella pneumoniae Strains. Front Cell Infect Microbiol 2021; 11:599924. [PMID: 33708644 PMCID: PMC7940544 DOI: 10.3389/fcimb.2021.599924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past few decades, extensively drug resistant (XDR) resistant Klebsiella pneumoniae has become a notable burden to healthcare all over the world. Especially carbapenemase-producing strains are problematic due to their capability to withstand even last resort antibiotics. Some sequence types (STs) of K. pneumoniae are significantly more prevalent in hospital settings in comparison to other equally resistant strains. This provokes the question whether or not there are phenotypic characteristics that may render certain K. pneumoniae more suitable for epidemic dispersal between patients, hospitals, and different environments. In this study, we selected seven epidemic and non-epidemic carbapenem resistant K. pneumoniae isolates for extensive systematic characterization for phenotypic and genotypic qualities in order to identify potential factors that precede or emerge from epidemic successfulness. Studied characteristics include growth rates and densities in different conditions (media, temperature, pH, resource levels), tolerance to alcohol and drought, inhibition between strains, ability to compensate pH, as well as various genomic features. Overall, there are clear differences between isolates, yet, only drought tolerance was found to notably associate with non-epidemic K. pneumoniae strains. We further report a preliminary study on the potential to control K. pneumoniae ST11 with an antimicrobial component produced by a non-epidemic K. pneumoniae. This component initially restricts bacterial growth, but stable resistance develops rapidly in vitro.
Collapse
Affiliation(s)
- Katariina Koskinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Anni-Maria Örmälä-Odegrip
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tarmo Ketola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Analyses of the Effect of Peptidoglycan on Photocatalytic Bactericidal Activity Using Different Growth Phases Cells of Gram-Positive Bacterium and Spheroplast Cells of Gram-Negative Bacterium. Catalysts 2021. [DOI: 10.3390/catal11020147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We conducted photocatalytic experiments focusing on the peptidoglycan layer to elucidate the details of the mechanism of photocatalytic sterilization. The previous study of our laboratory suggested that the presence of the peptidoglycan layer increases the bactericidal effect. To further verify it, the following experiments were performed: experiments on cells with different peptidoglycan layer thickness used Lactobacillus plantarum cells with different growth phases, experiments on cells with the thin peptidoglycan layer used Escherichia coli cells and spheroplast cells from which the peptidoglycan layer was removed from E. coli cells. The bactericidal effects increased as the growth progresses of L. plantarum. It was confirmed by TEM that the thickness of the peptidoglycan layer increased with cell growth. The survival rates of E. coli intact cells were significantly lower than those of spheroplast cells. These results strongly suggest that the peptidoglycan layer enhances the photocatalytic bactericidal effect. As a result of allowing the photocatalytic reaction to act on peptidoglycan, the amount of hydroxyl radical was smaller, and the amount of hydrogen peroxide was higher than in the absence of peptidoglycan. It is suggested that peptidoglycan may convert produced hydroxyl radical to hydrogen peroxide.
Collapse
|
10
|
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO 2-FeS 2 Nanocomposites. Int J Nanomedicine 2020; 15:8911-8920. [PMID: 33209024 PMCID: PMC7670305 DOI: 10.2147/ijn.s282689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. METHODS In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were successfully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. RESULTS In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 - and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. CONCLUSION TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yu-Cheng Hsiao
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | | | - Moh Alimansur
- Dharma Husada Nursing Academy, Kediri, East Java64114, Indonesia
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
11
|
Ahmad MA, Yuesuo Y, Ao Q, Adeel M, Hui ZY, Javed R. Appraisal of Comparative Therapeutic Potential of Undoped and Nitrogen-Doped Titanium Dioxide Nanoparticles. Molecules 2019; 24:E3916. [PMID: 31671678 PMCID: PMC6864622 DOI: 10.3390/molecules24213916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitrogen-doped and undoped titanium dioxide nanoparticles were successfully fabricated by simple chemical method and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM) techniques. The reduction in crystalline size of TiO2 nanoparticles (from 20-25 nm to 10-15 nm) was observed by TEM after doping with N. Antibacterial, antifungal, antioxidant, antidiabetic, protein kinase inhibition and cytotoxic properties were assessed in vitro to compare the therapeutic potential of both kinds of TiO2 nanoparticles. All biological activities depicted significant enhancement as a result of addition of N as doping agent to TiO2 nanoparticles. Klebsiella pneumoniae has been illuminated to be the most susceptible bacterial strain out of various Gram-positive and Gram-negative isolates of bacteria used in this study. Good fungicidal activity has been revealed against Aspergillus flavus. 38.2% of antidiabetic activity and 80% of cytotoxicity has been elucidated by N-doped TiO2 nanoparticles towards alpha-amylase enzyme and Artemia salina (brine shrimps), respectively. Moreover, notable protein kinase inhibition against Streptomyces and antioxidant effect including reducing power and % inhibition of DPPH has been demonstrated. This investigation unveils the more effective nature of N-doped TiO2 nanoparticles in comparison to undoped TiO2 nanoparticles indicated by various biological tests. Hence, N-doped TiO2 nanoparticles have more potential to be employed in biomedicine for the cure of numerous infections.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Yang Yuesuo
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhang Yan Hui
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| |
Collapse
|
12
|
Enescu D, Cerqueira MA, Fucinos P, Pastrana LM. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 2019; 134:110814. [PMID: 31520669 DOI: 10.1016/j.fct.2019.110814] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.
Collapse
Affiliation(s)
- Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Pablo Fucinos
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
13
|
Barnes M, Feit C, Grant TA, Brisbois EJ. Antimicrobial polymer modifications to reduce microbial bioburden on endotracheal tubes and ventilator associated pneumonia. Acta Biomater 2019; 91:220-234. [PMID: 31022549 DOI: 10.1016/j.actbio.2019.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Hospital associated infections (HAIs), infections acquired by patients during care in a hospital, remain a prevalent issue in the healthcare field. These infections often occur with the use of indwelling medical devices, such as endotracheal tubes (ETTs), that can result in ventilator-associated pneumonia (VAP). When examining the various routes of infection, VAP is associated with the highest incidence, rate of morbidity, and economic burden. Although ETTs are essential for the survival of patients requiring mechanical ventilation, their use comes with complications. The presence of an ETT in the airway impairs physiological host defense mechanisms for clearance of pathogens and provides a platform for oropharynx microorganism transport to the sterile tracheobronchial network. Antibiotics are administered to treat lower respiratory infections; however, they are not always effective and consequently can result in increased antibiotic resistance. Prophylactic approaches by altering the surface of ETTs to prevent the establishment and growth of bacteria have exhibited promising results. In addition, passive surface modifications that prevent bacterial establishment and growth, or active coatings that possess a bactericidal effect have also proven effective. In this review we aim to highlight the importance of preventing biofilm establishment on indwelling medical devices, focusing on ETTs. We will investigate successful antimicrobial modifications to ETTs and the future avenues that will ultimately decrease HAIs and improve patient care. STATEMENT OF SIGNIFICANCE: Infections that occur with indwelling medicals devices remain a constant concern in the medical field and can result in hospital-acquired infections. Specifically, ventilator associated pneumonia (VAP) occurs with the use of an endotracheal tube (ETT). Infections often require use of antibiotics and can result in patient mortality. Our review includes a summary of the recent collective work of antimicrobial ETT modifications and potential avenues for further investigations in an effort to reduce VAP associated with ETTs. Polymer modifications with antibacterial nature have been developed and tested; however, a focus on ETTs is lacking and clinical availability of new antimicrobial ETT devices is limited. Our collective work shows the successful and prospective applications to the surfaces of ETTs that can support researchers and physicians to create safer medical devices.
Collapse
|
14
|
Martinelli A, Alberti S, Caratto V, Lova P, Locardi F, Pampararo G, Villa S, Ferretti M. Structural studies on copper and nitrogen doped nanosized anatase. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zkri-2017-2143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Pure TiO2, N- and Cu-doped and double-doped (Cu, N) samples were synthesized via sol–gel route in order to investigate the local and average structure of the crystalline TiO2 synthesized under different pH conditions. Samples are mainly constituted of anatase phase, even though low but significant amounts of secondary brookite grew in most samples. A detailed structural characterization was performed by means of synchrotron X-ray elastic scattering experiments; structural data of the different samples were obtained by means of the Rietveld refinement, whereas insights about their local structure were gained by means of the pair distribution analysis.
Collapse
Affiliation(s)
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Valentina Caratto
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Paola Lova
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Federico Locardi
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Giovanni Pampararo
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Silvia Villa
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| | - Maurizio Ferretti
- CNR-SPIN , corso F.M. Perrone 24 , 16152 Genova , Italy
- Department of Chemistry and Industrial Chemistry , University of Genova , Via Dodecaneso 31 , 16146 Genova , Italy
| |
Collapse
|