1
|
Mei L, Fu Q, Guo T, Ji Q, Zhou Y. Structural changes and cholesterol-lowering in denatured whey protein isolate: Malic acid combined enzymolysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Bustos AY, Angeles Frias M, Ledesma AE. Biophysical and Structural Insights in α‐Amylase and Bile Acids interaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Y. Bustos
- Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero. Av. Belgrano Sur 1912 4200. Santiago del Estero Argentina
- Facultad de Humanidades Ciencias Sociales y de la Salud (FHU) Universidad Nacional de Santiago del Estero. Av. Belgrano Sur 1912 4200. Santiago del Estero Argentina
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET) Universidad Nacional de Santiago del Estero RN 9, km 1125, (4206) Santiago del Estero Argentina
| | - María Angeles Frias
- Applied Biophysics and Food Research Center CIBAAL-UNSE-CONICET) Laboratory of Biointerphases and Biomimetic Systems. Santiago del Estero Argentina
| | - Ana E. Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET) Universidad Nacional de Santiago del Estero RN 9, km 1125, (4206) Santiago del Estero Argentina
- Departamento Académico de Química Facultad de Ciencias Exactas y Tecnologías Universidad Nacional de Santiago del Estero Av. Belgrano Sur 1912 4200 Santiago del Estero Argentina
| |
Collapse
|
3
|
Validation of Recombinant Chicken Liver Bile Acid Binding Protein as a Tool for Cholic Acid Hosting. Biomolecules 2021; 11:biom11050645. [PMID: 33925706 PMCID: PMC8146743 DOI: 10.3390/biom11050645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
Bile acids (BAs) are hydroxylated steroids derived from cholesterol that act at the intestinal level to facilitate the absorption of several nutrients and also play a role as signaling molecules. In the liver of various vertebrates, the trafficking of BAs is mediated by bile acid-binding proteins (L-BABPs). The ability to host hydrophobic or amphipathic molecules makes BABPs suitable for the distribution of a variety of physiological and exogenous substances. Thus, BABPs have been proposed as drug carriers, and more recently, they have also been employed to develop innovative nanotechnology and biotechnology systems. Here, we report an efficient protocol for the production, purification, and crystallization of chicken liver BABP (cL-BABP). By means of target expression as His6-tag cL-BABP, we obtained a large amount of pure and homogeneous proteins through a simple purification procedure relying on affinity chromatography. The recombinant cL-BABP showed a raised propensity to crystallize, allowing us to obtain its structure at high resolution and, in turn, assess the structural conservation of the recombinant cL-BABP with respect to the liver-extracted protein. The results support the use of recombinant cL-BABP for the development of drug carriers, nanotechnologies, and innovative synthetic photoswitch systems.
Collapse
|
4
|
Pagano K, Paolino M, Fusi S, Zanirato V, Trapella C, Giuliani G, Cappelli A, Zanzoni S, Molinari H, Ragona L, Olivucci M. Bile Acid Binding Protein Functionalization Leads to a Fully Synthetic Rhodopsin Mimic. J Phys Chem Lett 2019; 10:2235-2243. [PMID: 30995409 DOI: 10.1021/acs.jpclett.9b00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rhodopsins are photoreceptive proteins using light to drive a plethora of biological functions such as vision, proton and ion pumping, cation and anion channeling, and gene and enzyme regulation. Here we combine organic synthesis, NMR structural studies, and photochemical characterization to show that it is possible to prepare a fully synthetic mimic of rhodopsin photoreceptors. More specifically, we conjugate a bile acid binding protein with a synthetic mimic of the rhodopsin protonated Schiff base chromophore to achieve a covalent complex featuring an unnatural protein host, photoswitch, and photoswitch-protein linkage with a reverse orientation. We show that, in spite of its molecular-level diversity, light irradiation of the prepared mimic fuels a photochromic cycle driven by sequential photochemical and thermal Z/E isomerizations reminiscent of the photocycles of microbial rhodopsins.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Stefania Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | | | | | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche , Università di Verona , Strada Le Grazie , 37134 Verona , Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
- Chemistry Department , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
5
|
Siow HL, Choi SB, Gan CY. Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Tomaselli S, Ramirez DOS, Carletto RA, Varesano A, Vineis C, Zanzoni S, Molinari H, Ragona L. Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | | | | | - Alessio Varesano
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Claudia Vineis
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie; Università degli Studi di Verona; Strada le Grazie 15 37134 Verona Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| |
Collapse
|
7
|
Salminen TA, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. PLANTA 2016; 244:971-997. [PMID: 27562524 PMCID: PMC5052319 DOI: 10.1007/s00425-016-2585-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
The non-specific lipid transfer proteins (LTPs) constitute a large protein family found in all land plants. They are small proteins characterized by a tunnel-like hydrophobic cavity, which makes them suitable for binding and transporting various lipids. The LTPs are abundantly expressed in most tissues. In general, they are synthesized with an N-terminal signal peptide that localizes the protein to spaces exterior to the plasma membrane. The in vivo functions of LTPs are still disputed, although evidence has accumulated for a role in the synthesis of lipid barrier polymers, such as cuticular waxes, suberin, and sporopollenin. There are also reports suggesting that LTPs are involved in signaling during pathogen attacks. LTPs are considered as key proteins for the plant's survival and colonization of land. In this review, we aim to present an overview of the current status of LTP research and also to discuss potential future applications of these proteins. We update the knowledge on 3D structures and lipid binding and review the most recent data from functional investigations, such as from knockout or overexpressing experiments. We also propose and argument for a novel system for the classification and naming of the LTPs.
Collapse
Affiliation(s)
- Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | | | - Johan Edqvist
- IFM, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
8
|
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J Chem Phys 2016; 144:184901. [DOI: 10.1063/1.4948323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Carmelo La Rosa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Silvia Scalisi
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Fabio Lolicato
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Antonio Raudino
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
9
|
Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1130-43. [PMID: 25277800 PMCID: PMC4254959 DOI: 10.1152/ajpgi.00209.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/28/2014] [Indexed: 01/31/2023]
Abstract
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Danilo Landrock
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ann B Kier
- Department of Pathobiology, Texas A & M University, College Station, Texas; and
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, College Station, Texas;
| |
Collapse
|