1
|
Kos J, Radić B, Lešić T, Anić M, Jovanov P, Šarić B, Pleadin J. Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods 2024; 13:1391. [PMID: 38731762 PMCID: PMC11083470 DOI: 10.3390/foods13091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxins contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Radić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Tina Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia;
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Bojana Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.R.); (P.J.); (B.Š.)
| | - Jelka Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (T.L.); (J.P.)
| |
Collapse
|
2
|
Radić B, Radović R, Janić Hajnal E, Mandić A, Đekić S, Stojanović Z, Kos J. Moniliformin Occurrence in Serbian Maize over Four Years: Understanding Weather-Dependent Variability. Toxins (Basel) 2023; 15:634. [PMID: 37999497 PMCID: PMC10675640 DOI: 10.3390/toxins15110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Moniliformin (MON) represents one of the most widespread emerging mycotoxins, whose presence in food and feed can potentially cause harmful effects on the health of both the public and animals. In order to investigate MON occurrence, a total of four hundred (n = 400) samples of unprocessed maize were sampled from different regions (Bačka, Banat, and Srem) of Serbia during a period of four years (2018-2021) and were analyzed using a validated liquid chromatography with tandem mass spectrometry (LC-MS/MS) method. The influence of regional differences and variations from year to year in terms of weather conditions on the occurrence of MON was also assessed. The obtained validation parameters indicated that the LC-MS/MS method is applicable to the determination of MON in maize samples. It can be observed from the acquired findings that all samples were contaminated with MON, while concentration levels varied between the samples, especially from different sampling years. The maize samples showed the greatest levels of MON concentration during the dry and hot climatic conditions experienced in 2021. In maize samples harvested in the period 2018-2020, the MON concentration levels detected were about two to three times lower compared to the year 2021. Additionally, a comprehensive investigation into the correlation between weather conditions and the occurrence of MON in maize grown in Serbia was undertaken by reviewing the outcomes of research undertaken in the past decade.
Collapse
Affiliation(s)
- Bojana Radić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (R.R.); (E.J.H.); (A.M.); (J.K.)
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Radmila Radović
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (R.R.); (E.J.H.); (A.M.); (J.K.)
| | - Elizabet Janić Hajnal
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (R.R.); (E.J.H.); (A.M.); (J.K.)
| | - Anamarija Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (R.R.); (E.J.H.); (A.M.); (J.K.)
| | - Sanja Đekić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Sudentski Trg 12-16, 11158 Belgrade, Serbia;
| | - Zorica Stojanović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Kos
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (R.R.); (E.J.H.); (A.M.); (J.K.)
| |
Collapse
|
3
|
Dong T, Qiao S, Xu J, Shi J, Qiu J, Ma G. Effect of Abiotic Conditions on Growth, Mycotoxin Production, and Gene Expression by Fusarium fujikuroi Species Complex Strains from Maize. Toxins (Basel) 2023; 15:toxins15040260. [PMID: 37104197 PMCID: PMC10141623 DOI: 10.3390/toxins15040260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Fusarium fujikuroi species complex (FFSC) strains are a major concern for food quantity and quality due to their strong ability to synthesize mycotoxins. The effects of interacting conditions of water activity, temperature, and incubation time on the growth rate, toxin production, and expression level of biosynthetic genes were examined. High temperature and water availability increased fungal growth. Higher water activity was in favor of toxin accumulation. The maximum amounts of fusaric acid (FA) and fumonisin B1 (FB1) were usually observed at 20–25 °C. F. andiyazi could produce a higher content of moniliformin (MON) in the cool environment than F. fujikuroi. The expression profile of biosynthetic genes under environmental conditions varied wildly; it was suggested that these genes might be expressed in a strain-dependent manner. FB1 concentration was positively related to the expression of FUM1, while a similar correlation of FUB8 and FUB12 with FA production could be observed in F. andiyazi, F. fujikuroi, and F. subglutinans. This study provides useful information in the monitoring and prevention of such toxins entering the maize production chain.
Collapse
Affiliation(s)
- Ting Dong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shouning Qiao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianrong Shi
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianbo Qiu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guizhen Ma
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Radić B, Kos J, Janić Hajnal E, Malachová A, Krska R, Sulyok M. Fusarium metabolites in maize from regions of Northern Serbia in 2016-2017. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:295-305. [PMID: 34369295 DOI: 10.1080/19393210.2021.1961877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The main objective of this study was to determine the presence of Fusarium metabolites in maize samples collected from different regions of Northern Serbia (Bačka, Banat and Srem) during a period of two years (2016-2017). A total of 458 maize samples were analysed by liquid chromatography-tandem mass spectrometry. A total of 40 metabolites were detected, where 94% of the samples contained at least 5 metabolites. Fumonisins (including B1, B2, B3 and B4), moniliformin and bikaverin were the most frequent (80-98%) Fusarium metabolites in both years. Furthermore, in samples from 2016, fumonisin A1 and A2, deoxynivalenol, deoxynivalenol-3-glucoside, zearalenone, culmorin, 15-hydroxyculmorin, fusapyron, fusaproliferin and aurofusarin were detected with frequencies of 58-80%. Levels of certain Fusarium metabolites in 2016 were higher on average due to increased humidity when compared to 2017, which was characterised by warm and dry conditions.
Collapse
Affiliation(s)
- Bojana Radić
- University of Novi Sad, Institute of Food Technology in Novi Sad, Novi Sad, Serbia
| | - Jovana Kos
- University of Novi Sad, Institute of Food Technology in Novi Sad, Novi Sad, Serbia
| | | | - Alexandra Malachová
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| |
Collapse
|
6
|
Radić B, Janić Hajnal E, Mandić A, Krulj J, Stojanović Z, Kos J. Development and validation of an HPLC–DAD method for the determination of moniliformin in maize. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bojana Radić
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Republic of Serbia
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Elizabet Janić Hajnal
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Anamarija Mandić
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Jelena Krulj
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Zorica Stojanović
- Faculty of Technology Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Jovana Kos
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| |
Collapse
|